메뉴 건너뛰기




Volumn 1805, Issue , 2000, Pages 317-328

Scaling up a boosting-based learner via adaptive sampling

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE BOOSTING; DATA MINING; DECISION TREES; ITERATIVE METHODS; LARGE DATASET;

EID: 84942801923     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45571-x_37     Document Type: Conference Paper
Times cited : (22)

References (23)
  • 1
    • 0001931577 scopus 로고    scopus 로고
    • An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
    • 1998
    • Bauer, E. and Kohavi, R. 1998. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Machine Learning, 1-38, 1998.
    • (1998) Machine Learning , pp. 1-38
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 0001823341 scopus 로고    scopus 로고
    • An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization
    • Dietterich, T., 1998. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Machine Learning, 32:1-22.
    • (1998) Machine Learning , vol.32 , pp. 1-22
    • Dietterich, T.1
  • 3
    • 84949206728 scopus 로고    scopus 로고
    • Praictical Algorithms for On-line Selection. Proceedings of the First International Conference on Discovery Science, DS'98
    • Domingo, C, Gavalda, R. and Watanabe, R., 1998. Praictical Algorithms for On-line Selection. Proceedings of the First International Conference on Discovery Science, DS'98. Lecture Notes in Artificial Intelligence 1532:150-161.
    • (1998) Lecture Notes in Artificial Intelligence , vol.1532 , pp. 150-161
    • Domingo, C.1    Gavalda, R.2    Watanabe, R.3
  • 4
    • 84862123499 scopus 로고    scopus 로고
    • Adaptive Sampling Methods for Scaling Up Knowledge Discovery Algorithms. Proceedings of the Second International Conference on Discovery Science, DS'99
    • Domingo, C, Gavalda, R. and Watanabe, O., 1999. Adaptive Sampling Methods for Scaling Up Knowledge Discovery Algorithms. Proceedings of the Second International Conference on Discovery Science, DS'99. Lecture Notes on Artificial Intelligence, 1721, pp. 172-183.
    • (1999) Lecture Notes on Artificial Intelligence , vol.1721 , pp. 172-183
    • Domingo, C.1    Gavalda, R.2    Watanabe, O.3
  • 5
    • 0005271994 scopus 로고    scopus 로고
    • Tech Rep. C-133, Dept. of Math and Computing Science, Tokyo Institute of Technology
    • Domingo, C. and Watanabe, O., 1999. MadaBoost: A modification of AdaBoost. Tech Rep. C-133, Dept. of Math and Computing Science, Tokyo Institute of Technology. URL: http://www.is.titech.ac. jp/"carlos.
    • (1999) Madaboost: A Modification of Adaboost
    • Domingo, C.1    Watanabe, O.2
  • 7
    • 0031269184 scopus 로고    scopus 로고
    • Beyond independence: Conditions for the optimality of the simple Bayesian classifier
    • P. Domingos and M. Pazzani. Beyond independence: Conditions for the optimality of the simple Bayesian classifier. Machine Learning, 29:2, 103-130, 1997.
    • (1997) Machine Learning , vol.29 , Issue.2 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 10
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund, Y., 1995. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256-285.
    • (1995) Information and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 11
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., and Schapire, R.E., 1997. A decision-theoretic generalization of on-line learning and an application to boosting. JCSS, 55(1):119-139.
    • (1997) JCSS , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 13
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most common datasets
    • R.C. Holte. Very simple classification rules perform well on most common datasets. Machine Learning, 11:63-91, 1993.
    • (1993) Machine Learning , vol.11 , pp. 63-91
    • Holte, R.C.1
  • 15
    • 33745834241 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Department of Information and Computer Science
    • Keogh, E., Blake, C. and Merz, C.J., 1998. UCI repository of machine learning databases, [http://www.ics.uci.ed u/ mleau-n/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science.
    • (1998) UCI Repository of Machine Learning Databases
    • Keogh, E.1    Blake, C.2    Merz, C.J.3
  • 21
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R. E., 1990. The strength of weak learnability. Machine Learning, 5(2):197-227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 22
    • 0003503387 scopus 로고
    • Wiley Mathematical, Statistics Series
    • Wald, A., 1947. Sequential Analysis. Wiley Mathematical, Statistics Series.
    • (1947) Sequential Analysis
    • Wald, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.