메뉴 건너뛰기




Volumn 20, Issue 1-2, 2003, Pages 39-51

Using a genetic algorithm and a perceptron for feature selection and supervised class learning in DNA microarray data

Author keywords

Clustering; Dimensionality reduction; Feature selection; Gene expression; Genetic algorithm; Perceptron; SOTA; Weights

Indexed keywords

COMPUTER SIMULATION; DATA COMPRESSION; DNA SEQUENCES; GENES; GENETIC ALGORITHMS; NEURAL NETWORKS;

EID: 0242653758     PISSN: 02692821     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1026032530166     Document Type: Article
Times cited : (30)

References (19)
  • 2
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of Tumor and normal colon tissues probed with oligonucleotide arrays
    • Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D. & Levine, A. J. (1999). Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed with Oligonucleotide Arrays. Proc. Natl. Acad. Sci. USA. 96: 6745-6750.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 3
    • 0012724465 scopus 로고    scopus 로고
    • Exploring the new world of the genome with DNA microarrays
    • Brown, P. O. & Botstein, D. (1999). Exploring the New World of the Genome with DNA Microarrays. Nature Biotechnol. 14: 1675-1680.
    • (1999) Nature Biotechnol. , vol.14 , pp. 1675-1680
    • Brown, P.O.1    Botstein, D.2
  • 4
    • 0034564271 scopus 로고    scopus 로고
    • Analysis of the gene expression microarrays for phenotype classification
    • Califano, A., Stolovitzky, G. & Tu, Y. (2000). Analysis of the Gene Expression Microarrays for Phenotype Classification. Proc. Intell. Syst. Mol. Biol. 8: 75-85.
    • (2000) Proc. Intell. Syst. Mol. Biol. , vol.8 , pp. 75-85
    • Califano, A.1    Stolovitzky, G.2    Tu, Y.3
  • 5
    • 0012724466 scopus 로고    scopus 로고
    • Application of SOTA, a growing neural network algorithm, to gene expression profile clustering
    • Cummings, C. A. (2001). Application of SOTA, a Growing Neural Network Algorithm, to Gene Expression Profile Clustering. Briefings in Bioinformatics 2: 402-404.
    • (2001) Briefings in Bioinformatics , vol.2 , pp. 402-404
    • Cummings, C.A.1
  • 6
    • 0031042985 scopus 로고    scopus 로고
    • Phylogenetic reconstruction using a growing neural network that adopts the topology of a phylogenetic tree
    • Dopazo, J. & Carazo, J. M. (1997). Phylogenetic Reconstruction Using a Growing Neural Network that Adopts the Topology of a Phylogenetic Tree. J. Mol. Evol. 44: 226-233.
    • (1997) J. Mol. Evol. , vol.44 , pp. 226-233
    • Dopazo, J.1    Carazo, J.M.2
  • 7
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M. & Haussler, D. (2000). Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data. Bioinformatics 16: 906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 8
    • 0034710876 scopus 로고    scopus 로고
    • Coupled two-way clustering analysis of gene microarray data
    • Getz, G., Levine, E. & Domany, E. (2000). Coupled Two-way Clustering Analysis of Gene Microarray Data. Proc. Natl. Acad. Sci. USA 97: 12079-12084.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 12079-12084
    • Getz, G.1    Levine, E.2    Domany, E.3
  • 10
    • 0035108235 scopus 로고    scopus 로고
    • A hierarchical unsupervised growing neural network for clustering gene expression patterns
    • Herrero, J., Valencia, A. & Dopazo, J. (2001). A Hierarchical Unsupervised Growing Neural Network for Clustering Gene Expression Patterns. Bioinformatics. 17: 126-136.
    • (2001) Bioinformatics , vol.17 , pp. 126-136
    • Herrero, J.1    Valencia, A.2    Dopazo, J.3
  • 13
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method
    • Li, L., Weinberg, C. R., Darden, T. A. & Pedersen, L. G. (2001). Gene Selection for Sample Classification Based on Gene Expression Data: Study of Sensitivity to Choice of Parameters of the GA/KNN Method. Bioinformatics 17: 1131-1142.
    • (2001) Bioinformatics , vol.17 , pp. 1131-1142
    • Li, L.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 14
    • 0038561723 scopus 로고    scopus 로고
    • Supervised neural networks for clustering conditions in DNA array data after reducing noise by clustering gene expression profiles
    • Kluwer Academic Publisher
    • Mateos, A., Herrero, J., Tamames, J. & Dopazo, J. (2002). Supervised Neural Networks for Clustering Conditions in DNA Array Data After Reducing Noise by Clustering Gene Expression Profiles. Microarray Data Analysis II, 91-103. Kluwer Academic Publisher.
    • (2002) Microarray Data Analysis II , pp. 91-103
    • Mateos, A.1    Herrero, J.2    Tamames, J.3    Dopazo, J.4
  • 19
    • 0034800371 scopus 로고    scopus 로고
    • Principal component analysis for clustering gene expression data
    • Yeung, K. Y. & Ruzzo, W. L. (2001). Principal Component Analysis for Clustering Gene Expression Data. Bioinformatics 17: 763-774.
    • (2001) Bioinformatics , vol.17 , pp. 763-774
    • Yeung, K.Y.1    Ruzzo, W.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.