메뉴 건너뛰기




Volumn 10, Issue 4, 1999, Pages 725-740

Function approximation - a fast-convergence neural approach based on spectral analysis

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; CONVERGENCE OF NUMERICAL METHODS; ERROR ANALYSIS; ESTIMATION; FREQUENCY DOMAIN ANALYSIS; FUNCTION EVALUATION; LEARNING ALGORITHMS; SPECTRUM ANALYSIS;

EID: 0032637954     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.774207     Document Type: Article
Times cited : (10)

References (29)
  • 1
    • 0024880831 scopus 로고
    • Multilayered feedforward networks are universal approximators
    • K. Hornik, M. Stinchombe, and H. White, "Multilayered feedforward networks are universal approximators," Neural Networks, vol. 2, no. 5, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchombe, M.2    White, H.3
  • 4
    • 36149031331 scopus 로고
    • Learning in feedforward layered networks: The tiling algorithm
    • M. Mezard and J.-P. Nadal, "Learning in feedforward layered networks: The tiling algorithm," J. Phys. A: Math. and Gen., vol. 22, pp. 2191-2203, 1989.
    • (1989) J. Phys. A: Math. and Gen. , vol.22 , pp. 2191-2203
    • Mezard, M.1    Nadal, J.-P.2
  • 5
    • 0000783575 scopus 로고
    • The Upstart algorithm: A method for constructing and training feedforward neural networks
    • M. Frean, "The Upstart algorithm: A method for constructing and training feedforward neural networks," Neural Comput., vol. 2, no. 2, p. 1989, 1990.
    • (1990) Neural Comput. , vol.2 , Issue.2 , pp. 1989
    • Frean, M.1
  • 6
    • 0000031351 scopus 로고
    • A convergence theorem for sequential learning in two-layer perceptrons
    • M. Marchand, M. Golea, and P. Rujan, "A convergence theorem for sequential learning in two-layer perceptrons," Europhys. Lett., vol. 18, pp. 487-492, 1990.
    • (1990) Europhys. Lett. , vol.18 , pp. 487-492
    • Marchand, M.1    Golea, M.2    Rujan, P.3
  • 7
    • 0025964567 scopus 로고
    • Backpropagation algorithm which varies the number of hidden units
    • Y. Hirose, K. Yamashita, and S. Hijiya, "Backpropagation algorithm which varies the number of hidden units," Neural Networks, vol. 4, pp. 61-66, 1991.
    • (1991) Neural Networks , vol.4 , pp. 61-66
    • Hirose, Y.1    Yamashita, K.2    Hijiya, S.3
  • 8
    • 0012808421 scopus 로고
    • The offset algorithm: Building and learning method for multilayered neural networks
    • D. Martinez and D. Esteve, "The offset algorithm: Building and learning method for multilayered neural networks," Europhys. Lett., vol. 11, pp. 95-100, 1992.
    • (1992) Europhys. Lett. , vol.11 , pp. 95-100
    • Martinez, D.1    Esteve, D.2
  • 9
    • 0026837585 scopus 로고
    • A training algorithm for binary feedforward neural networks
    • D. L. Gray and A. N. Michel, "A training algorithm for binary feedforward neural networks," IEEE Trans. Neural Networks, vol. 3, pp. 176-194, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 176-194
    • Gray, D.L.1    Michel, A.N.2
  • 10
    • 0042474533 scopus 로고
    • A polynomial time algorithm for generating neural networks for pattern classification: Its stability properties and some test results
    • S. Mukhopadhyay, A. Roy, L. S. Kim, and S. Govil, "A polynomial time algorithm for generating neural networks for pattern classification: Its stability properties and some test results," Neural Comput., vol. 5, no. 2, pp. 317-330, 1993.
    • (1993) Neural Comput. , vol.5 , Issue.2 , pp. 317-330
    • Mukhopadhyay, S.1    Roy, A.2    Kim, L.S.3    Govil, S.4
  • 11
    • 0347763086 scopus 로고
    • Supervised learning with growing cell structures
    • J. D. Cowan, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann
    • B. Fritzke, "Supervised learning with growing cell structures," Advances in Neural Information Processing Systems, J. D. Cowan, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann, vol. 6, pp. 255-262, 1994.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 255-262
    • Fritzke, B.1
  • 12
    • 0029341578 scopus 로고
    • Constructive learning of recurrent neural networks: Limitations of recurrent cascade correlation and a simple solution
    • July
    • C. L. Giles, D. Chen, G.-Z. Sun, H.-H. Chen, Y.-C. Lee, and M. W. Goudreau, "Constructive learning of recurrent neural networks: Limitations of recurrent cascade correlation and a simple solution," IEEE Trans. Neural Networks, vol. 6, pp. 829-836, July 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 829-836
    • Giles, C.L.1    Chen, D.2    Sun, G.-Z.3    Chen, H.-H.4    Lee, Y.-C.5    Goudreau, M.W.6
  • 13
    • 0032523459 scopus 로고    scopus 로고
    • Efficient adaptive learning for classification tasks with binary units
    • J. M. Torres Moreno and M. B. Gordon, "Efficient adaptive learning for classification tasks with binary units," Neural Comput., vol. 10, no. 4, pp. 1007-1030, 1998.
    • (1998) Neural Comput. , vol.10 , Issue.4 , pp. 1007-1030
    • Torres Moreno, J.M.1    Gordon, M.B.2
  • 14
    • 84945797434 scopus 로고
    • Dynamic node creation in backpropagation networks
    • T. Ash, "Dynamic node creation in backpropagation networks," Connection Sci., vol. 1, pp. 365-375, 1989.
    • (1989) Connection Sci. , vol.1 , pp. 365-375
    • Ash, T.1
  • 15
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • D. S. Touretzky, Ed., San Mateo, CA: Morgan Kaufmann
    • S. E. Fahlman and C. Labiere, "The cascade-correlation learning architecture," Advances Neural Inform. Processing Syst., D. S. Touretzky, Ed., vol. 2. San Mateo, CA: Morgan Kaufmann, pp. 524-532, 1990.
    • (1990) Advances Neural Inform. Processing Syst. , vol.2 , pp. 524-532
    • Fahlman, S.E.1    Labiere, C.2
  • 16
    • 8244220973 scopus 로고
    • Basis-function trees as a generalization of local variable selection methods for function approximation
    • R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds., San Mateo, CA: Morgan Kaufmann
    • T. D. Sanger, "Basis-function trees as a generalization of local variable selection methods for function approximation," Advances in Neural Information Processing Systems, R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds., vol. 3. San Mateo, CA: Morgan Kaufmann, pp. 700-706, 1991.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 700-706
    • Sanger, T.D.1
  • 17
    • 0001071040 scopus 로고
    • A resource allocating network for function interpolation
    • J. Platt, "A resource allocating network for function interpolation," Neural Comput., vol. 3, no. 2, pp. 213-225, 1991.
    • (1991) Neural Comput. , vol.3 , Issue.2 , pp. 213-225
    • Platt, J.1
  • 18
    • 0025747581 scopus 로고
    • Approximation theory and feedforward networks
    • E. K. Blum and L. K. Li, "Approximation theory and feedforward networks," Neural Networks, vol. 4, no. 4. pp. 511-515, 1991.
    • (1991) Neural Networks , vol.4 , Issue.4 , pp. 511-515
    • Blum, E.K.1    Li, L.K.2
  • 19
    • 0002551093 scopus 로고
    • Node splitting: A constructive algorithm for feedforward neural networks
    • M. Wynn-Jones, "Node splitting: A constructive algorithm for feedforward neural networks," Neural Comput. Applicat., vol. 1, no. 1, pp. 17-22, 1993.
    • (1993) Neural Comput. Applicat. , vol.1 , Issue.1 , pp. 17-22
    • Wynn-Jones, M.1
  • 20
    • 0028255785 scopus 로고
    • Toward generating neural network structures for function approximation
    • T. M. Nabhan and A. Y. Zomaya, "Toward generating neural network structures for function approximation," Neural Networks, vol. 7, no. 1, pp. 89-99, 1994.
    • (1994) Neural Networks , vol.7 , Issue.1 , pp. 89-99
    • Nabhan, T.M.1    Zomaya, A.Y.2
  • 21
    • 0030244218 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • Sept.
    • T. Y. Kwok and D. Y. Yeung, "Constructive algorithms for structure learning in feedforward neural networks for regression problems," IEEE Trans. Neural Networks, vol. 7, pp. 1168-1183, Sept. 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 1168-1183
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 22
    • 0031236099 scopus 로고    scopus 로고
    • Objective functions for training new hidden units in constructive neural networks
    • Sept.
    • _, "Objective functions for training new hidden units in constructive neural networks," IEEE Trans. Neural Networks, vol. 8, pp. 1131-1148, Sept. 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 1131-1148
  • 23
    • 0031270611 scopus 로고    scopus 로고
    • Growing radial basis neural networks: Merging supervised and unsupervised learning with network growth techniques
    • N. B. Karayiannis and G. W. Mi, "Growing radial basis neural networks: Merging supervised and unsupervised learning with network growth techniques," IEEE Trans. Neural Networks, vol. 8, pp. 1492-1506, 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 1492-1506
    • Karayiannis, N.B.1    Mi, G.W.2
  • 24
    • 33749699853 scopus 로고    scopus 로고
    • Spectral analysis and synthesis of three-layered feedforward neural networks for function approximation
    • Lausanne, Switzerland, Feb.
    • A. Pelagotti and V. Piuri, "Spectral analysis and synthesis of three-layered feedforward neural networks for function approximation," in Proc. IEEE MicroNeuro, Lausanne, Switzerland, Feb. 1996, pp. 239-245.
    • (1996) Proc. IEEE MicroNeuro , pp. 239-245
    • Pelagotti, A.1    Piuri, V.2
  • 25
    • 0029770319 scopus 로고    scopus 로고
    • Spectral approximation of functions by using three-layered feedforward neural networks
    • Washington, D.C., June
    • C. Citterio, A. Pelagotti, V. Piuri, and L. Rocca, "Spectral approximation of functions by using three-layered feedforward neural networks," in Proc. IEEE Int. Conf. Neural Networks ICNN96, Washington, D.C., June 1996, pp. 1830-1834.
    • (1996) Proc. IEEE Int. Conf. Neural Networks ICNN96 , pp. 1830-1834
    • Citterio, C.1    Pelagotti, A.2    Piuri, V.3    Rocca, L.4
  • 28
    • 0002663672 scopus 로고
    • Quasi Newton methods, motivation and theory
    • Jan
    • J. E. Dennis and J. J. Moré, "Quasi Newton methods, motivation and theory," SIAM Rev., vol. 19, no. 1, pp. 46-89, Jan 1977.
    • (1977) SIAM Rev. , vol.19 , Issue.1 , pp. 46-89
    • Dennis, J.E.1    Moré, J.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.