-
1
-
-
34250395123
-
Facets of the knapsack polytope
-
E. BALAS, 1975. Facets of the Knapsack Polytope, Mathematical Programming 8, 146-164.
-
(1975)
Mathematical Programming
, vol.8
, pp. 146-164
-
-
Balas, E.1
-
2
-
-
0010792341
-
Lifting and complementing yields all the facets of positive zero-one programming polytopes
-
R.W. Cottle, H.L. Kennington, and B. Korte (eds.), North-Holland, Amsterdam
-
E. BALAS and E. ZEMEL, 1984. Lifting and Complementing Yields All the Facets of Positive Zero-One Programming Polytopes, in Mathematical Programming, R.W. Cottle, H.L. Kennington, and B. Korte (eds.), North-Holland, Amsterdam, 13-24.
-
(1984)
Mathematical Programming
, pp. 13-24
-
-
Balas, E.1
Zemel, E.2
-
3
-
-
0011056349
-
A hard knapsack problem
-
C.S. CHUNG, M.S. HUNG, and W.O. ROM, 1988. A Hard Knapsack Problem, Naval Research Logistics Quarterly 35, 85-98.
-
(1988)
Naval Research Logistics Quarterly
, vol.35
, pp. 85-98
-
-
Chung, C.S.1
Hung, M.S.2
Rom, W.O.3
-
4
-
-
0009625877
-
Hard knapsack problems
-
V. CHVATAL, 1980. Hard Knapsack Problems, Operations Research 28, 1402-1411.
-
(1980)
Operations Research
, vol.28
, pp. 1402-1411
-
-
Chvatal, V.1
-
5
-
-
0020815626
-
Solving large-scale zero-one linear programming problems
-
H. CROWDER, E. JOHNSON, and M. PADBERG, 1983. Solving Large-Scale Zero-One Linear Programming Problems, Operations Research 31, 803-834.
-
(1983)
Operations Research
, vol.31
, pp. 803-834
-
-
Crowder, H.1
Johnson, E.2
Padberg, M.3
-
7
-
-
0000660003
-
Lifted cover inequalities for 0-1 integer programs: Computation
-
Z. GU, G.L. NEMHAUSER, and M.W.P. SAVELSBERGH, 1998. Lifted Cover Inequalities for 0-1 Integer Programs: Computation, INFORMS Journal on Computing 10, 427-437.
-
(1998)
INFORMS Journal on Computing
, vol.10
, pp. 427-437
-
-
Gu, Z.1
Nemhauser, G.L.2
Savelsbergh, M.W.P.3
-
8
-
-
0347577533
-
Lifted cover inequalities for 0-1 integer programs: Algorithms
-
Georgia Institute of Technology, in preparation
-
Z. GU, G.L. NEMHAUSER, and M.W.P. SAVELSBERGH, 1999. Lifted Cover Inequalities for 0-1 Integer Programs: Algorithms, Technical Report, Georgia Institute of Technology, in preparation.
-
(1999)
Technical Report
-
-
Gu, Z.1
Nemhauser, G.L.2
Savelsbergh, M.W.P.3
-
9
-
-
38249010560
-
The complexity of lifted inequalities for the knapsack problem
-
D. HARTVIGSEN and E. ZEMEL, 1992. The Complexity of Lifted Inequalities for the Knapsack Problem, Discrete Applied Mathematics 39, 113-123.
-
(1992)
Discrete Applied Mathematics
, vol.39
, pp. 113-123
-
-
Hartvigsen, D.1
Zemel, E.2
-
10
-
-
0026125207
-
Improving LP-representations of zero-one linear programs for branch-and-cut
-
K. HOFFMAN and M. PADBERG, 1991. Improving LP-Representations of Zero-One Linear Programs for Branch-and-Cut, ORSA Journal of Computing 3, 121-134.
-
(1991)
ORSA Journal of Computing
, vol.3
, pp. 121-134
-
-
Hoffman, K.1
Padberg, M.2
-
11
-
-
0039247398
-
Trivial integer programs unsolved by branch and bound
-
R.G. JERESLOW, 1974. Trivial Integer Programs Unsolved by Branch and Bound, Mathematical Programming 6, 105-109.
-
(1974)
Mathematical Programming
, vol.6
, pp. 105-109
-
-
Jereslow, R.G.1
-
12
-
-
0032131434
-
The complexity of cover inequality separation
-
D. KLABJAN, G.L. NEMHAUSER, and C. TOVEY, 1998. The Complexity of Cover Inequality Separation, Operations Research Letters 23, 35-40.
-
(1998)
Operations Research Letters
, vol.23
, pp. 35-40
-
-
Klabjan, D.1
Nemhauser, G.L.2
Tovey, C.3
-
13
-
-
38249015948
-
A characterization of knapsacks with the Max-flow-min-cut property
-
M. LAURENT and A. SASSANO, 1992. A Characterization of Knapsacks with the Max-Flow-Min-Cut Property, Operations Research Letters 11, 105-110.
-
(1992)
Operations Research Letters
, vol.11
, pp. 105-110
-
-
Laurent, M.1
Sassano, A.2
-
15
-
-
0028742392
-
Lifted cover facets of the 0-1 knapsack polytope with GUB constraints
-
G.L. NEMHAUSER and P.H. VANCE, 1994. Lifted Cover Facets of the 0-1 Knapsack Polytope with GUB Constraints, Operations Research Letters 16, 255-263.
-
(1994)
Operations Research Letters
, vol.16
, pp. 255-263
-
-
Nemhauser, G.L.1
Vance, P.H.2
-
17
-
-
0000214393
-
A note on zero-one programming
-
M.W. PADBERG, 1975. A Note on Zero-One Programming, Operations Research 23, 833-837.
-
(1975)
Operations Research
, vol.23
, pp. 833-837
-
-
Padberg, M.W.1
-
18
-
-
0002793189
-
(1, k)-Configurations and facets for packing problems
-
M.W. PADBERG, 1980. (1, k)-Configurations and Facets for Packing Problems, Mathematical Programming 18, 94-99.
-
(1980)
Mathematical Programming
, vol.18
, pp. 94-99
-
-
Padberg, M.W.1
-
19
-
-
0039004009
-
On the 0/1 knapsack polytope
-
Konrad-Zuse-Zentrum fur Informationstechnik Berlin, Berlin, Germany
-
R. WEISMANTEL, 1994. On the 0/1 Knapsack Polytope, Technical Report SC 91-1, Konrad-Zuse-Zentrum fur Informationstechnik Berlin, Berlin, Germany.
-
(1994)
Technical Report
, vol.SC 91-1
-
-
Weismantel, R.1
-
20
-
-
34250395041
-
Faces for a linear inequality in 0-1 variables
-
L.A. WOLSEY, 1975. Faces for a Linear Inequality in 0-1 Variables, Mathematical Programming 8, 165-178.
-
(1975)
Mathematical Programming
, vol.8
, pp. 165-178
-
-
Wolsey, L.A.1
-
21
-
-
0000271159
-
Easily computable facets of the knapsack polytope
-
E. ZEMEL, 1989. Easily Computable Facets of the Knapsack Polytope, Mathematics of Operations Research 14, 760-765.
-
(1989)
Mathematics of Operations Research
, vol.14
, pp. 760-765
-
-
Zemel, E.1
|