메뉴 건너뛰기




Volumn 11, Issue 1, 1999, Pages 117-123

Lifted cover inequalities for 0-1 integer programs: Complexity

Author keywords

Complexity of separation; Cutting plane; Separation algorithms

Indexed keywords


EID: 0242463701     PISSN: 10919856     EISSN: None     Source Type: Journal    
DOI: 10.1287/ijoc.11.1.117     Document Type: Article
Times cited : (63)

References (21)
  • 1
    • 34250395123 scopus 로고
    • Facets of the knapsack polytope
    • E. BALAS, 1975. Facets of the Knapsack Polytope, Mathematical Programming 8, 146-164.
    • (1975) Mathematical Programming , vol.8 , pp. 146-164
    • Balas, E.1
  • 2
    • 0010792341 scopus 로고
    • Lifting and complementing yields all the facets of positive zero-one programming polytopes
    • R.W. Cottle, H.L. Kennington, and B. Korte (eds.), North-Holland, Amsterdam
    • E. BALAS and E. ZEMEL, 1984. Lifting and Complementing Yields All the Facets of Positive Zero-One Programming Polytopes, in Mathematical Programming, R.W. Cottle, H.L. Kennington, and B. Korte (eds.), North-Holland, Amsterdam, 13-24.
    • (1984) Mathematical Programming , pp. 13-24
    • Balas, E.1    Zemel, E.2
  • 4
    • 0009625877 scopus 로고
    • Hard knapsack problems
    • V. CHVATAL, 1980. Hard Knapsack Problems, Operations Research 28, 1402-1411.
    • (1980) Operations Research , vol.28 , pp. 1402-1411
    • Chvatal, V.1
  • 5
    • 0020815626 scopus 로고
    • Solving large-scale zero-one linear programming problems
    • H. CROWDER, E. JOHNSON, and M. PADBERG, 1983. Solving Large-Scale Zero-One Linear Programming Problems, Operations Research 31, 803-834.
    • (1983) Operations Research , vol.31 , pp. 803-834
    • Crowder, H.1    Johnson, E.2    Padberg, M.3
  • 8
    • 0347577533 scopus 로고    scopus 로고
    • Lifted cover inequalities for 0-1 integer programs: Algorithms
    • Georgia Institute of Technology, in preparation
    • Z. GU, G.L. NEMHAUSER, and M.W.P. SAVELSBERGH, 1999. Lifted Cover Inequalities for 0-1 Integer Programs: Algorithms, Technical Report, Georgia Institute of Technology, in preparation.
    • (1999) Technical Report
    • Gu, Z.1    Nemhauser, G.L.2    Savelsbergh, M.W.P.3
  • 9
    • 38249010560 scopus 로고
    • The complexity of lifted inequalities for the knapsack problem
    • D. HARTVIGSEN and E. ZEMEL, 1992. The Complexity of Lifted Inequalities for the Knapsack Problem, Discrete Applied Mathematics 39, 113-123.
    • (1992) Discrete Applied Mathematics , vol.39 , pp. 113-123
    • Hartvigsen, D.1    Zemel, E.2
  • 10
    • 0026125207 scopus 로고
    • Improving LP-representations of zero-one linear programs for branch-and-cut
    • K. HOFFMAN and M. PADBERG, 1991. Improving LP-Representations of Zero-One Linear Programs for Branch-and-Cut, ORSA Journal of Computing 3, 121-134.
    • (1991) ORSA Journal of Computing , vol.3 , pp. 121-134
    • Hoffman, K.1    Padberg, M.2
  • 11
    • 0039247398 scopus 로고
    • Trivial integer programs unsolved by branch and bound
    • R.G. JERESLOW, 1974. Trivial Integer Programs Unsolved by Branch and Bound, Mathematical Programming 6, 105-109.
    • (1974) Mathematical Programming , vol.6 , pp. 105-109
    • Jereslow, R.G.1
  • 13
    • 38249015948 scopus 로고
    • A characterization of knapsacks with the Max-flow-min-cut property
    • M. LAURENT and A. SASSANO, 1992. A Characterization of Knapsacks with the Max-Flow-Min-Cut Property, Operations Research Letters 11, 105-110.
    • (1992) Operations Research Letters , vol.11 , pp. 105-110
    • Laurent, M.1    Sassano, A.2
  • 15
    • 0028742392 scopus 로고
    • Lifted cover facets of the 0-1 knapsack polytope with GUB constraints
    • G.L. NEMHAUSER and P.H. VANCE, 1994. Lifted Cover Facets of the 0-1 Knapsack Polytope with GUB Constraints, Operations Research Letters 16, 255-263.
    • (1994) Operations Research Letters , vol.16 , pp. 255-263
    • Nemhauser, G.L.1    Vance, P.H.2
  • 17
    • 0000214393 scopus 로고
    • A note on zero-one programming
    • M.W. PADBERG, 1975. A Note on Zero-One Programming, Operations Research 23, 833-837.
    • (1975) Operations Research , vol.23 , pp. 833-837
    • Padberg, M.W.1
  • 18
    • 0002793189 scopus 로고
    • (1, k)-Configurations and facets for packing problems
    • M.W. PADBERG, 1980. (1, k)-Configurations and Facets for Packing Problems, Mathematical Programming 18, 94-99.
    • (1980) Mathematical Programming , vol.18 , pp. 94-99
    • Padberg, M.W.1
  • 19
    • 0039004009 scopus 로고
    • On the 0/1 knapsack polytope
    • Konrad-Zuse-Zentrum fur Informationstechnik Berlin, Berlin, Germany
    • R. WEISMANTEL, 1994. On the 0/1 Knapsack Polytope, Technical Report SC 91-1, Konrad-Zuse-Zentrum fur Informationstechnik Berlin, Berlin, Germany.
    • (1994) Technical Report , vol.SC 91-1
    • Weismantel, R.1
  • 20
    • 34250395041 scopus 로고
    • Faces for a linear inequality in 0-1 variables
    • L.A. WOLSEY, 1975. Faces for a Linear Inequality in 0-1 Variables, Mathematical Programming 8, 165-178.
    • (1975) Mathematical Programming , vol.8 , pp. 165-178
    • Wolsey, L.A.1
  • 21
    • 0000271159 scopus 로고
    • Easily computable facets of the knapsack polytope
    • E. ZEMEL, 1989. Easily Computable Facets of the Knapsack Polytope, Mathematics of Operations Research 14, 760-765.
    • (1989) Mathematics of Operations Research , vol.14 , pp. 760-765
    • Zemel, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.