메뉴 건너뛰기




Volumn 10, Issue 4, 1998, Pages 427-437

Lifted cover inequalities for 0-1 integer programs: Computation

Author keywords

0 1 integer programming; Branch and cut; Cover inequality; Integer Programming; Lifting

Indexed keywords


EID: 0000660003     PISSN: 10919856     EISSN: None     Source Type: Journal    
DOI: 10.1287/ijoc.10.4.427     Document Type: Article
Times cited : (159)

References (28)
  • 1
    • 34250395123 scopus 로고
    • Facets of the Knapsack Polytope
    • E. BALAS, 1975. Facets of the Knapsack Polytope, Mathematical Programming 8, 146-164.
    • (1975) Mathematical Programming , vol.8 , pp. 146-164
    • Balas, E.1
  • 2
    • 0000511675 scopus 로고
    • Facets of the Knapsack Polytope from Minimal Covers
    • E. BALAS and E. ZEMEL, 1978. Facets of the Knapsack Polytope from Minimal Covers, SIAM Journal on Applied Mathematics 34, 119-148.
    • (1978) SIAM Journal on Applied Mathematics , vol.34 , pp. 119-148
    • Balas, E.1    Zemel, E.2
  • 5
    • 0020815626 scopus 로고
    • Solving Large Scale Zero-One Linear Programming Problems
    • H. CROWDER, E.L. JOHNSON, and M.W. PADBERG, 1983. Solving Large Scale Zero-One Linear Programming Problems, Operations Research 31, 803-834.
    • (1983) Operations Research , vol.31 , pp. 803-834
    • Crowder, H.1    Johnson, E.L.2    Padberg, M.W.3
  • 6
    • 0014593589 scopus 로고
    • Some Polyhedra Related to Combinatorial Problems
    • R.E. GOMORY, 1969. Some Polyhedra Related to Combinatorial Problems, Linear Algebra and Its Applications 2, 451-558.
    • (1969) Linear Algebra and Its Applications , vol.2 , pp. 451-558
    • Gomory, R.E.1
  • 7
    • 0021521702 scopus 로고
    • A Cutting Plane Algorithm for the Linear Ordering Problem
    • M. GRÖTSCHEL, M. JÜNGER, and G. REINELT, 1984. A Cutting Plane Algorithm for the Linear Ordering Problem, Operations Research 32, 1195-1220.
    • (1984) Operations Research , vol.32 , pp. 1195-1220
    • Grötschel, M.1    Jünger, M.2    Reinelt, G.3
  • 12
    • 38249010560 scopus 로고
    • The Complexity of Lifted Inequalities for the Knapsack Problem
    • D. HARTVIGSEN and E. ZEMEL, 1992. The Complexity of Lifted Inequalities for the Knapsack Problem, Discrete Applied Mathematics 39, 113-123.
    • (1992) Discrete Applied Mathematics , vol.39 , pp. 113-123
    • Hartvigsen, D.1    Zemel, E.2
  • 14
    • 0026125207 scopus 로고
    • Improving LP-Representations of Zero-One Linear Programs for Branch-and-Cut
    • K.L. HOFFMAN and M.W. PADBERG, 1991. Improving LP-Representations of Zero-One Linear Programs for Branch-and-Cut, ORSA Journal on Computing 3, 121-134.
    • (1991) ORSA Journal on Computing , vol.3 , pp. 121-134
    • Hoffman, K.L.1    Padberg, M.W.2
  • 16
    • 0002431626 scopus 로고
    • A Note on the Knapsack Problem with Special Ordered Sets
    • E.L. JOHNSON and M.W. PADBERG, 1981. A Note on the Knapsack Problem with Special Ordered Sets, Operations Research Letters 1, 18-22.
    • (1981) Operations Research Letters , vol.1 , pp. 18-22
    • Johnson, E.L.1    Padberg, M.W.2
  • 19
    • 0028742392 scopus 로고
    • Lifted Cover Facets of the 0-1 Knapsack Polytope with GUB Constraints
    • G.L. NEMHAUSER and P.H. VANCE, 1994. Lifted Cover Facets of the 0-1 Knapsack Polytope with GUB Constraints, Operations Research Letters 16, 255-263.
    • (1994) Operations Research Letters , vol.16 , pp. 255-263
    • Nemhauser, G.L.1    Vance, P.H.2
  • 21
    • 34250429350 scopus 로고
    • On the Facial Structure of Set Packing Polyhedra
    • M.W. PADBERG, 1973. On the Facial Structure of Set Packing Polyhedra, Mathematical Programming 5, 199-215.
    • (1973) Mathematical Programming , vol.5 , pp. 199-215
    • Padberg, M.W.1
  • 22
    • 0023313723 scopus 로고
    • Optimization of a 532 City Symmetric Traveling Salesman Problem by Branch and Cut
    • M. PADBERG and G. RINALDI, 1987. Optimization of a 532 City Symmetric Traveling Salesman Problem by Branch and Cut. Operations Research Letters 6, 1-7.
    • (1987) Operations Research Letters , vol.6 , pp. 1-7
    • Padberg, M.1    Rinaldi, G.2
  • 23
    • 0023250226 scopus 로고
    • Solving Mixed 0-1 Programs by Automatic Reformulation
    • T.J. VAN ROY and L.A. WOLSEY, 1987. Solving Mixed 0-1 Programs by Automatic Reformulation, Operations Research 35, 45-57.
    • (1987) Operations Research , vol.35 , pp. 45-57
    • Van Roy, T.J.1    Wolsey, L.A.2
  • 24
    • 34250395041 scopus 로고
    • Faces for a Linear Inequality in 0-1 Variables
    • L.A. WOLSEY, 1975. Faces for a Linear Inequality in 0-1 Variables, Mathematical Programming 8, 165-178.
    • (1975) Mathematical Programming , vol.8 , pp. 165-178
    • Wolsey, L.A.1
  • 25
    • 0000413764 scopus 로고
    • Facets and Strong Valid Inequalities for Integer Programs
    • L.A. WOLSEY, 1976. Facets and Strong Valid Inequalities for Integer Programs, Operations Research 24, 367-372.
    • (1976) Operations Research , vol.24 , pp. 367-372
    • Wolsey, L.A.1
  • 26
    • 0001615533 scopus 로고
    • Valid Inequalities for 0-1 Knapsacks and MIPS with Generalized Upper Bound Constraints
    • L.A. WOLSEY, 1990. Valid Inequalities For 0-1 Knapsacks and MIPS with Generalized Upper Bound Constraints, Discrete Applied Mathematics 29, 251-261.
    • (1990) Discrete Applied Mathematics , vol.29 , pp. 251-261
    • Wolsey, L.A.1
  • 27
    • 34250287176 scopus 로고
    • Lifting the Facets of Zero-One Polytopes
    • E. ZEMEL, 1978. Lifting the Facets of Zero-One Polytopes, Mathematical Programming 15, 268-277.
    • (1978) Mathematical Programming , vol.15 , pp. 268-277
    • Zemel, E.1
  • 28
    • 0000271159 scopus 로고
    • Easily Computable Facets of the Knapsack Polytope
    • E. ZEMEL, 1989. Easily Computable Facets of the Knapsack Polytope, Mathematics of Operations Research 14, 760-765.
    • (1989) Mathematics of Operations Research , vol.14 , pp. 760-765
    • Zemel, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.