-
1
-
-
0037061511
-
-
A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature (London) 416, 608 (2002).
-
(2002)
Nature (London)
, vol.416
, pp. 608
-
-
Osterloh, A.1
Amico, L.2
Falci, G.3
Fazio, R.4
-
5
-
-
33750926031
-
-
A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987)
-
(1987)
Rev. Mod. Phys.
, vol.59
, pp. 1
-
-
Leggett, A.J.1
Chakravarty, S.2
Dorsey, A.T.3
Fisher, M.P.A.4
Garg, A.5
Zwerger, W.6
-
8
-
-
0037012927
-
-
D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M.H. Devoret, Science 296, 886 (2002)
-
(2002)
Science
, vol.296
, pp. 886
-
-
Vion, D.1
Aassime, A.2
Cottet, A.3
Joyez, P.4
Pothier, H.5
Urbina, C.6
Esteve, D.7
Devoret, M.H.8
-
9
-
-
0037012882
-
-
Y. Yu, S. Han, X. Chu, S. Chu, and Z. Wang, ibid. 296, 889 (2002)
-
(2002)
Science
, vol.296
, pp. 889
-
-
Yu, Y.1
Han, S.2
Chu, X.3
Chu, S.4
Wang, Z.5
-
10
-
-
0037185482
-
-
Y. Nakamura, Y.A. Pashkin, T. Yamamoto, and J.S. Tsai, Phys. Rev. Lett. 88, 047901 (2002)
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 047901
-
-
Nakamura, Y.1
Pashkin, Y.A.2
Yamamoto, T.3
Tsai, J.S.4
-
11
-
-
45849154713
-
-
J.M. Martinis, S. Nam, J. Aumentado, and C. Urbina, ibid. 89, 117901 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 117901
-
-
Martinis, J.M.1
Nam, S.2
Aumentado, J.3
Urbina, C.4
-
14
-
-
4243216277
-
-
C.H. Bennett, D.P. DiVicenzo, J.A. Smolin, and W.K. Wootters, Phys. Rev. A 54, 3824 (1996).
-
(1996)
Phys. Rev. A
, vol.54
, pp. 3824
-
-
Bennett, C.H.1
DiVicenzo, D.P.2
Smolin, J.A.3
Wootters, W.K.4
-
25
-
-
0242422841
-
-
note
-
For lattice models, such as the Heisenberg spin chain, the density-matrix renormalization group (DMRG) technique gives reliable results and the NRG does not. It was recently suggested [T.J. Osborne and M.A. Nielsen, Quantum Info. Processing 1, 45 (2002)] that this is because the DMRG manifestly takes into account the entanglement, whereas the NRG does not. However, it is not necessary to use the DMRG here because the NRG is known to give reliable results for quantum impurity problems.
-
-
-
-
28
-
-
33646794968
-
-
J.A. Sidles, J.L. Garbini, W.M. Dougherty, and S.-H. Chao, Proc. IEEE 91, 799 (2003).
-
(2003)
Proc. IEEE
, vol.91
, pp. 799
-
-
Sidles, J.A.1
Garbini, J.L.2
Dougherty, W.M.3
Chao, S.-H.4
-
31
-
-
0001637935
-
-
A. LeClair, F. Lesage, S. Lukyanov, and H. Saleur, Phys. Lett. A 235, 203 (1997).
-
(1997)
Phys. Lett. A
, vol.235
, pp. 203
-
-
LeClair, A.1
Lesage, F.2
Lukyanov, S.3
Saleur, H.4
-
32
-
-
0242506133
-
-
note
-
The TBA equations are quite complicated for arbitrary anisotropies. For special anisotropies corresponding to dissipation strengths α = 1/v and α = 1 - 1/v, v=3, ⋯, the TBA equations are manageable and have been solved previously [14]. Going beyond this is very complicated, but technically possible [14].
-
-
-
|