메뉴 건너뛰기




Volumn 55, Issue 1-2, 2003, Pages 285-305

Volatility forecasting from multiscale and high-dimensional market data

Author keywords

High frequency finance; Support vector machines; Volatility models

Indexed keywords

DATA REDUCTION; FINANCE; MATHEMATICAL MODELS; RISK MANAGEMENT;

EID: 0242288805     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0925-2312(03)00381-3     Document Type: Article
Times cited : (56)

References (45)
  • 1
    • 0003427251 scopus 로고    scopus 로고
    • Exchange rate returns standardized by realised volatility are (nearly) Gaussian
    • NBER Working Paper No: 7488
    • T.G. Andersen, T. Bollerslev, F.X. Diebold, P. Labys, Exchange rate returns standardized by realised volatility are (nearly) Gaussian, NBER Working Paper No: 7488.
    • Andersen, T.G.1    Bollerslev, T.2    Diebold, F.X.3    Labys, P.4
  • 3
    • 0040485278 scopus 로고    scopus 로고
    • Fractionally integrated generalized autoregressive conditional heteroskedasticity
    • R.T. Baillie, T. Bollerslev, H.-O. Mikkelsen, Fractionally integrated generalized autoregressive conditional heteroskedasticity, J. Econometrics 74 (1996) 3.
    • (1996) J. Econometrics , vol.74 , pp. 3
    • Baillie, R.T.1    Bollerslev, T.2    Mikkelsen, H.-O.3
  • 5
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroskedasticity
    • T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, J. Econometrics 31 (1986) 307.
    • (1986) J. Econometrics , vol.31 , pp. 307
    • Bollerslev, T.1
  • 6
    • 37649027602 scopus 로고    scopus 로고
    • Leverage effect in financial markets: The retarded volatility model
    • J.-P. Bouchaud, A. Matacz, M. Potters, Leverage effect in financial markets: the retarded volatility model, Phys. Rev. Lett. 87 (2001) 228701.
    • (2001) Phys. Rev. Lett. , vol.87 , pp. 228701
    • Bouchaud, J.-P.1    Matacz, A.2    Potters, M.3
  • 8
    • 0004561951 scopus 로고    scopus 로고
    • Support vector machine classification of microarray gene expression data
    • Technical report UCSC-CRL-99-09, University of California, Santa Cruz
    • M. Brown, W. Grundy, D. Lin, N. Cristianini, C. Sugnet, M. Ares Jr., D. Haussler, Support vector machine classification of microarray gene expression data, Technical report UCSC-CRL-99-09, University of California, Santa Cruz.
    • Brown, M.1    Grundy, W.2    Lin, D.3    Cristianini, N.4    Sugnet, C.5    Ares Jr., M.6    Haussler, D.7
  • 9
    • 0034228643 scopus 로고    scopus 로고
    • The analysis of decomposition methods for support vector machines
    • C.-C. Chang, C.-W. Hsu, C.-J. Lin, The analysis of decomposition methods for support vector machines, IEEE Trans. Neural Networks 11 (2000) 1003.
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 1003
    • Chang, C.-C.1    Hsu, C.-W.2    Lin, C.-J.3
  • 12
    • 0010063925 scopus 로고    scopus 로고
    • An artificial neural network-GARCH model for international stock return volatility
    • R.G. Donaldson, M. Kamstra, An artificial neural network-GARCH model for international stock return volatility, J. Empirical Finance 4 (1997) 17.
    • (1997) J. Empirical Finance , vol.4 , pp. 17
    • Donaldson, R.G.1    Kamstra, M.2
  • 13
    • 85030965570 scopus 로고    scopus 로고
    • Enforced-denial support vector machines for noisy data with applications of financial time series forecasting
    • Proceedings of the International Conference on Statistics, Combinatorics and Related Areas and the Eighth International Conference of Forum for Interdisciplinary Mathematics, School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2522, Australia, 19-21 December
    • D. Edelman, Enforced-denial support vector machines for noisy data with applications of financial time series forecasting, in: Proceedings of the International Conference on Statistics, Combinatorics and Related Areas and the Eighth International Conference of Forum for Interdisciplinary Mathematics, School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2522, Australia, 19-21 December 2001.
    • (2001)
    • Edelman, D.1
  • 14
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation
    • R.F. Engle, Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation, Econometrica 50 (1982) 987.
    • (1982) Econometrica , vol.50 , pp. 987
    • Engle, R.F.1
  • 16
    • 85030961513 scopus 로고    scopus 로고
    • A support vector machine approach to bankruptcy prediction: A case study
    • The 6th International Conference on Computational Finance, New York, January
    • A. Fan, D. Hong, M. Palanaswami, C. Tan, A support vector machine approach to bankruptcy prediction: a case study, The 6th International Conference on Computational Finance, New York, January 1999.
    • (1999)
    • Fan, A.1    Hong, D.2    Palanaswami, M.3    Tan, C.4
  • 17
    • 0003444256 scopus 로고    scopus 로고
    • Multifractality of the DM/US dollar exchange rate
    • Cowles Foundation Discussion Paper
    • A. Fisher, L. Calvet, B.B. Mandelbrot, Multifractality of the DM/US dollar exchange rate, Cowles Foundation Discussion Paper, 1997.
    • (1997)
    • Fisher, A.1    Calvet, L.2    Mandelbrot, B.B.3
  • 18
    • 0004185784 scopus 로고
    • Cambridge University Press, Cambridge
    • U. Frish, Turbulence, Cambridge University Press, Cambridge, 1995.
    • (1995) Turbulence
    • Frish, U.1
  • 19
    • 0013391409 scopus 로고    scopus 로고
    • Optimization of the neutral-network geomagnetic model for forecasting large-amplitude substorm events
    • V.V. Gavrishchaka, S.B. Ganguli, Optimization of the neutral-network geomagnetic model for forecasting large-amplitude substorm events, J. Geophys. Res. 106 (2001) 6247.
    • (2001) J. Geophys. Res. , vol.106 , pp. 6247
    • Gavrishchaka, V.V.1    Ganguli, S.B.2
  • 20
    • 39449088098 scopus 로고    scopus 로고
    • Support vector machine as an efficient tool for high-dimensional data processing: Application to substorm forecasting
    • V.V. Gavrishchaka, S.B. Ganguli, Support vector machine as an efficient tool for high-dimensional data processing: application to substorm forecasting, J. Geophys. Res. 106 (2001) 29911.
    • (2001) J. Geophys. Res. , vol.106 , pp. 29911
    • Gavrishchaka, V.V.1    Ganguli, S.B.2
  • 23
    • 85030962724 scopus 로고    scopus 로고
    • Modeling and estimation of long memory in stochastic volatility: Application to options on futures contracts
    • Working Paper, Cornell University
    • N. Lordkipanidze, Modeling and estimation of long memory in stochastic volatility: application to options on futures contracts, Working Paper, Cornell University, 2001.
    • (2001)
    • Lordkipanidze, N.1
  • 25
    • 0000501589 scopus 로고
    • Fractional brownian motions, fractional noises and applications
    • B.B. Mandelbrot, J.W. Van Ness, Fractional brownian motions, fractional noises and applications, SIAM Rev. 10 (1968) 422.
    • (1968) SIAM Rev. , vol.10 , pp. 422
    • Mandelbrot, B.B.1    Van Ness, J.W.2
  • 26
    • 0000684645 scopus 로고
    • Breast cancer diagnosis and prognosis via linear programming
    • O.L. Mangasarian, W.N. Street, W.H. Wolberg, Breast cancer diagnosis and prognosis via linear programming, Oper. Res. 43 (4) (1995) 570.
    • (1995) Oper. Res. , vol.43 , Issue.4 , pp. 570
    • Mangasarian, O.L.1    Street, W.N.2    Wolberg, W.H.3
  • 28
    • 0009645767 scopus 로고    scopus 로고
    • A correlated stochastic volatility model measuring leverage and other stylized facts
    • cond-mat/0111334 v1, November
    • J. Masoliver, J. Perello, A correlated stochastic volatility model measuring leverage and other stylized facts, cond-mat/0111334 v1, November 2001.
    • (2001)
    • Masoliver, J.1    Perello, J.2
  • 29
    • 85030953960 scopus 로고    scopus 로고
    • Modelling fluctuations of financial time series: From cascade process to stochastic volatility model
    • cond-mat/0005400, May
    • J.F. Muzy, J. Delour, E. Bacry, Modelling fluctuations of financial time series: from cascade process to stochastic volatility model, cond-mat/0005400, May 2000.
    • (2000)
    • Muzy, J.F.1    Delour, J.2    Bacry, E.3
  • 31
    • 0008197560 scopus 로고    scopus 로고
    • On the Noise Model of Support Vector Machine Regression
    • CBCL Paper 168, AI Memo 1651, Massachusetts Institute of Technology, Cambridge, MA
    • M. Pontil, S. Mukherjee, F. Girosi, On the Noise Model of Support Vector Machine Regression, CBCL Paper 168, AI Memo 1651, Massachusetts Institute of Technology, Cambridge, MA, 1998.
    • (1998)
    • Pontil, M.1    Mukherjee, S.2    Girosi, F.3
  • 35
    • 0032663580 scopus 로고    scopus 로고
    • Fat tails and non-linearity in volatility models: What is more important?
    • Proc. IEEE/IAFE 1999 Conference on Computational Intelligence for Financial Engineering (CIFEr), NY, USA
    • C. Schittenkopf, G. Dorffner, E.J. Dockner, Fat tails and non-linearity in volatility models: what is more important?, in: Proc. IEEE/IAFE 1999 Conference on Computational Intelligence for Financial Engineering (CIFEr), NY, USA, 1999, p. 259.
    • (1999) , pp. 259
    • Schittenkopf, C.1    Dorffner, G.2    Dockner, E.J.3
  • 38
    • 0033343363 scopus 로고    scopus 로고
    • ANN-DT: An algorithm for extraction of decision trees from artificial neural networks
    • G.P.J. Schmitz, C. Aldrich, F.S. Gouws, ANN-DT: an algorithm for extraction of decision trees from artificial neural networks, IEEE Trans. Neural Networks 10 (1999) 1392.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 1392
    • Schmitz, G.P.J.1    Aldrich, C.2    Gouws, F.S.3
  • 39
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks
    • A.B. Tickle, R. Andrews, M. Golea, J. Diederich, The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks, IEEE Trans. Neural Networks 9 (1998) 1057.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 1057
    • Tickle, A.B.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 41
    • 0035392694 scopus 로고    scopus 로고
    • Financial time series prediction using least squares support vector machines within the evidence framework
    • (Special Issue on Neural Networks in Financial Eng.)
    • T. Van Gestel, J. Suykens, D. Baestaens, A. Lambrechts, G. Lanckriet, B. Vandaele, B. De Moor, J. Vandewalle, Financial time series prediction using least squares support vector machines within the evidence framework, IEEE Trans. Neural Networks (Special Issue on Neural Networks in Financial Eng.) 12 (2001) 809.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 809
    • Van Gestel, T.1    Suykens, J.2    Baestaens, D.3    Lambrechts, A.4    Lanckriet, G.5    Vandaele, B.6    De Moor, B.7    Vandewalle, J.8
  • 45


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.