메뉴 건너뛰기




Volumn 6, Issue 6, 2002, Pages 483-502

Classification with sparse grids using simplicial basis functions

Author keywords

approximation; classification; combination technique; data mining; simplicial discretization; sparse grids

Indexed keywords

COMPUTATIONAL COMPLEXITY; DATA MINING; FUNCTIONS; MESH GENERATION;

EID: 0141944503     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/ida-2002-6602     Document Type: Article
Times cited : (39)

References (52)
  • 1
    • 0002744972 scopus 로고
    • Approximation of scattered data using smooth grid functions
    • E. Arge, M. Dæhlen and A. Tveito, Approximation of scattered data using smooth grid functions, J. Comput. Appl. Math 59 (1995), 191-205.
    • (1995) J. Comput. Appl. Math , vol.59 , pp. 191-205
    • Arge, E.1    Dæhlen, M.2    Tveito, A.3
  • 3
    • 0002632524 scopus 로고
    • N-th order polynomial spline blending
    • W. Schempp and K. Zeller, eds, ISNM 75, Birkḧauser, Basel
    • G. Baszenski, N-th order polynomial spline blending, in: Multivariate Approximation Theory III, W. Schempp and K. Zeller, eds, ISNM 75, Birkḧauser, Basel, 1985, pp. 35-46.
    • (1985) Multivariate Approximation Theory III , pp. 35-46
    • Baszenski, G.1
  • 7
    • 0000609554 scopus 로고
    • Some ecological conseque nces of a computer model of forest growth
    • D. Botkin, J. Janak and J. Wallis, Some ecological conseque nces of a computer model of forest growth, J. Ecology 60 (1972), 849-872.
    • (1972) J. Ecology , vol.60 , pp. 849-872
    • Botkin, D.1    Janak, J.2    Wallis, J.3
  • 9
    • 0006836513 scopus 로고    scopus 로고
    • Tensor product approximation spaces for the efficient numerical solution of partial differential equations
    • Konya, 1996 Nova Science, Publishers, to appear
    • H.-J. Bungartz, T. Dornseifer and C. Zenger, Tensor product approximation spaces for the efficient numerical solution of partial differential equations, in: Proc. Int.Workshop on Scientific Computations, Konya, 1996, Nova Science Publishers, to appear, 1997.
    • (1997) Proc. Int.Workshop on Scientific Computations
    • Bungartz, H.-J.1    Dornseifer, T.2    Zenger, C.3
  • 10
  • 13
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T.G. Dietterich, Approximate statistical tests for comparing supervised classification learning algorithms, Neural Computation 10(7) (1998), 1895-1924.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1924
    • Dietterich, T.G.1
  • 15
    • 0030099613 scopus 로고    scopus 로고
    • Information complexity of multivariate fredholm integral equations in sobolev classes
    • K. Frank, S. Heinrich and S. Pereverzev, Information Complexity of Multivariate Fredholm Integral Equations in Sobolev Classes, J. of Complexity 12 (1996), 17-34.
    • (1996) J. Of Complexity , vol.12 , pp. 17-34
    • Frank, K.1    Heinrich, S.2    Pereverzev, S.3
  • 16
    • 0001696328 scopus 로고
    • Simplizialzerlegungen von beschr̈ankter Flachheit
    • H. Freudenthal, Simplizialzerlegungen von beschr̈ankter Flachheit, Annals of Mathematics 43 (1942), 580-582.
    • (1942) Annals of Mathematics , vol.43 , pp. 580-582
    • Freudenthal, H.1
  • 18
    • 0001032475 scopus 로고    scopus 로고
    • On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique
    • J. Garcke and M. Griebel, On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique, Journal of Computational Physics 165(2) (2000), 694-716.
    • (2000) Journal of Computational Physics , vol.165 , Issue.2 , pp. 694-716
    • Garcke, J.1    Griebel, M.2
  • 19
    • 84944903241 scopus 로고    scopus 로고
    • On the parallelization of the sparse grid approach for data mining
    • Large-Scale Scientific Computations, Third International Conference, LSSC 2001 Sozopol, Bulgaria
    • J. Garcke and M. Griebel, On the parallelization of the sparse grid approach for data mining, in: Large-Scale Scientific Computations, Third International Conference, LSSC 2001, Sozopol, Bulgaria, vol. 2179 of Lecture Notes in Computer Science, 2001, pp. 22-32.
    • (2001) Lecture Notes in Computer Science , vol.2179 , pp. 22-32
    • Garcke, J.1    Griebel, M.2
  • 20
    • 0035198530 scopus 로고    scopus 로고
    • Data mining with sparse grids
    • J. Garcke, M. Griebel M. Thess, Data mining with sparse grids, Computing 67(3) (2001), 225-253.
    • (2001) Computing , vol.67 , Issue.3 , pp. 225-253
    • Garcke, J.1    Griebel, M.2    Thess, M.3
  • 21
    • 0242440688 scopus 로고    scopus 로고
    • Numerical integration using sparse grids
    • T. Gerstner and M. Griebel, Numerical Integration using Sparse Grids, Numer. Algorithms 18 (1998), 209-232.
    • (1998) Numer. Algorithms , vol.18 , pp. 209-232
    • Gerstner, T.1    Griebel, M.2
  • 22
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • F. Girosi, An equivalence between sparse approximation and support vector machines, Neural Computation 10(6) (1998), 1455-1480.
    • (1998) Neural Computation , vol.10 , Issue.6 , pp. 1455-1480
    • Girosi, F.1
  • 23
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • F. Girosi, M. Jones and T. Poggio, Regularization theory and neural networks architectures, Neural Computation 7 (1995), 219-265.
    • (1995) Neural Computation , vol.7 , pp. 219-265
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 24
    • 32044449925 scopus 로고
    • Generalized cross validation as a method for choosing a good ridge parameter
    • G. Golub, M. Heath G. Wahba, Generalized cross validation as a method for choosing a good ridge parameter, Technometrics 21 (1979), 215-224.
    • (1979) Technometrics , vol.21 , pp. 215-224
    • Golub, G.1    Heath G Wahba, M.2
  • 25
    • 0002621888 scopus 로고
    • The combination technique for the sparse grid solution of PDEs on multiprocessor machines
    • M. Griebel, The combination technique for the sparse grid solution of PDEs on multiprocessor machines, Parallel Processing Letters 2(1) (1992), 61-70.
    • (1992) Parallel Processing Letters , vol.2 , Issue.1 , pp. 61-70
    • Griebel, M.1
  • 26
    • 0032314774 scopus 로고    scopus 로고
    • Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences
    • M. Griebel, Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences, Computing 61(2) (1998), 151-179.
    • (1998) Computing , vol.61 , Issue.2 , pp. 151-179
    • Griebel, M.1
  • 27
    • 0000962738 scopus 로고
    • Parallel Computer Architectures: Theory, Hardware, Software, Applications, A. Bode and M. D. Cin, eds Springer Verlag
    • M. Griebel,W. Huber, T. St ̈ortkuhl and C. Zenger, On the parallel solution of 3D PDEs on a network of workstations and on vector computers, in: Parallel Computer Architectures: Theory, Hardware, Software, Applications, A. Bode and M. D. Cin, eds, vol. 732 of Lecture Notes in Computer Science, Springer Verlag, 1993, pp. 276-291.
    • (1993) Lecture Notes in Computer Science , vol.732 , pp. 276-291
    • Griebel, M.1    Huber, W.2
  • 28
    • 0034337983 scopus 로고    scopus 로고
    • Optimized tensor-product approximation spaces
    • M. Griebel and S. Knapek, Optimized tensor-product approximation spaces, Constructive Approximation 16(4) (2000), 525-540.
    • (2000) Constructive Approximation , vol.16 , Issue.4 , pp. 525-540
    • Griebel, M.1    Knapek, S.2
  • 29
    • 0033443380 scopus 로고    scopus 로고
    • Sparse grids for boundary integral equations
    • M. Griebel, P. Oswald T. Schiekofer, Sparse grids for boundary integral equations, Numer. Mathematik 83(2) (1999), 279-312.
    • (1999) Numer. Mathematik , vol.83 , Issue.2 , pp. 279-312
    • Griebel, M.1    Oswald, P.2    Schiekofer, T.3
  • 30
    • 0002524756 scopus 로고
    • A combination technique for the solution of sparse grid problems
    • P. de Groen and R Beauwens, eds, IMACS, Elsevier North Holland
    • M. Griebel, M. Schneider C. Zenger. A combination technique for the solution of sparse grid problems. in: Iterative Methods in Linear Algebra, P. de Groen and R. Beauwens, eds, IMACS, Elsevier, North Holland, 1992, pp. 263-281.
    • (1992) Iterative Methods in Linear Algebra , pp. 263-281
    • Griebel, M.1    Schneider, M.2    Zenger, C.3
  • 31
    • 0029256967 scopus 로고
    • The efficient solution of fluid dynamics problems by the combination technique
    • M. Griebel and V. Thurner, The efficient solution of fluid dynamics problems by the combination technique, Int. J. Num. Meth. for Heat and Fluid Flow 5(3) (1995), 251-269.
    • (1995) Int. J. Num. Meth. for Heat and Fluid Flow , vol.5 , Issue.3 , pp. 251-269
    • Griebel, M.1    Thurner, V.2
  • 32
    • 0004259070 scopus 로고    scopus 로고
    • Technical report Data Mining Group The Australian National University Canberra November Submitted to SIAM J. Scientific Computing
    • M. Hegland, O.M. Nielsen and Z. Shen, High dimensional smoothing based on multilevel analysis, Technical report, Data Mining Group, The Australian National University, Canberra, November 2000, Submitted to SIAM J. Scientific Computing.
    • (2000) High Dimensional Smoothing Based on Multilevel Analysis
    • Hegland, M.1    Nielsen, O.M.2    Shen, Z.3
  • 34
    • 0012950777 scopus 로고
    • Some combinatorial lemmas in topology
    • H.W. Kuhn, Some combinatorial lemmas in topology, IBM J. Res. Develop. 4 (1960), 518-524.
    • (1960) IBM J. Res. Develop , vol.4 , pp. 518-524
    • Kuhn, H.W.1
  • 38
    • 0032803502 scopus 로고    scopus 로고
    • Bayesian neural networks for classification: How useful is the evidence framework?
    • W.D. Penny and S.J. Roberts, Bayesian neural networks for classification: how useful is the evidence framework? Neural Networks 12 (1999), 877-892.
    • (1999) Neural Networks , vol.12 , pp. 877-892
    • Penny, W.D.1    Roberts, S.J.2
  • 39
    • 0000696616 scopus 로고
    • Neural networks and related methods for classification
    • B.D. Ripley, Neural networks and related methods for classification, Journal of the Royal Statistical Society B 56(3) (1994), 409-456.
    • (1994) Journal of the Royal Statistical Society B , vol.56 , Issue.3 , pp. 409-456
    • Ripley, B.D.1
  • 40
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • S.L. Salzberg, On comparing classifiers: Pitfalls to avoid and a recommended approach, Data Mining and Knowledge Discovery 1 (1997), 317-327.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 317-327
    • Salzberg, S.L.1
  • 42
    • 0000232949 scopus 로고    scopus 로고
    • Interpolation on sparse grids and Nikol'skij-Besov spaces of dominating mixed smoothness
    • W. Sickel and F. Sprengel, Interpolation on sparse grids and Nikol'skij-Besov spaces of dominating mixed smoothness, J. Comput. Anal. Appl. 1 (1999), 263-288.
    • (1999) J. Comput. Anal. Appl , vol.1 , pp. 263-288
    • Sickel, W.1    Sprengel, F.2
  • 43
    • 0031994918 scopus 로고    scopus 로고
    • 2d spiral pattern recognition with possibilistic measures
    • S. Singh, 2d spiral pattern recognition with possibilistic measures, Pattern Recognition Letters 19(2) (1998), 141-147.
    • (1998) Pattern Recognition Letters , vol.19 , Issue.2 , pp. 141-147
    • Singh, S.1
  • 44
    • 0001048298 scopus 로고
    • Quadrature and interpolation formulas for tensor products of certain classes of functions
    • Russian, Engl. Transl.: Soviet Math. Dokl. 4 1963, 240-243
    • S.A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk SSSR 148 (1963), 1042-1043. Russian, Engl. Transl.: Soviet Math. Dokl. 4 (1963), 240-243.
    • (1963) Dokl. Akad. Nauk SSSR , vol.148 , pp. 1042-1043
    • Smolyak, S.A.1
  • 45
    • 0001861898 scopus 로고
    • Approximation of functions with bounded mixed derivative
    • V.N. Temlyakov, Approximation of functions with bounded mixed derivative, Proc. Steklov Inst. Math. 1 (1989).
    • (1989) Proc. Steklov Inst. Math , vol.1
    • Temlyakov, V.N.1
  • 47
    • 0002260932 scopus 로고
    • Cross-validation techniques for smoothing spline functions in one or two dimensions
    • T. Gasser and M. Rosenblatt, eds, Springer-Verlag, Heidelberg
    • F. Utreras, Cross-validation techniques for smoothing spline functions in one or two dimensions, in: Smoothing techniques for curve estimation, T. Gasser and M. Rosenblatt, eds, Springer-Verlag, Heidelberg, 1979, pp. 196-231.
    • (1979) Smoothing Techniques for Curve Estimation , pp. 196-231
    • Utreras, F.1
  • 50
    • 0003241883 scopus 로고
    • Spline models for observational data
    • SIAM, Philadelphia
    • G. Wahba, Spline models for observational data, volume 59 of Series in Applied Mathematics, SIAM, Philadelphia, 1990.
    • (1990) Series in Applied Mathematics , vol.59
    • Wahba, G.1
  • 51
    • 0012950780 scopus 로고    scopus 로고
    • A. Wieland, Spiral data set, http://www.cs.cmu.edu/afs/cs.cmu.edu/ project/ai-repository/ai/areas/neural/b0.html.
    • Spiral Data Set
    • Wieland, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.