-
1
-
-
0003483217
-
-
Springer-Verlag, New York
-
M. GOLUBITSKY, I. STEWART, and D. G. SCHAEFFER, Singularities and Groups in Bifurcation Theory, Vol. II, Springer-Verlag, New York, 1988.
-
(1988)
Singularities and Groups in Bifurcation Theory
, vol.2
-
-
Golubitsky, M.1
Stewart, I.2
Schaeffer, D.G.3
-
2
-
-
84855627727
-
-
Birkhäuser, Basel
-
E. ALLGOWER, K. BÖHMER, and M. GOLUBITSKY (Eds.), Bifurcation and Symmetry, Birkhäuser, Basel, 1992.
-
(1992)
Bifurcation and Symmetry
-
-
Allgower, E.1
Böhmer, K.2
Golubitsky, M.3
-
3
-
-
85153303466
-
-
AMS, Providence RI
-
J. M. CHADHAM, M. GOLUBITSKY, M. G. M. GOMES, E. KNOBLOCH, and I. N. STEWART (Eds.), Pattern Formation: Symmetry Methods and Applications, AMS, Providence RI, 1991.
-
(1991)
Pattern Formation: Symmetry Methods and Applications
-
-
Chadham, J.M.1
Golubitsky, M.2
Gomes, M.G.M.3
Knobloch, E.4
Stewart, I.N.5
-
4
-
-
0029703994
-
Symmetry and the Chazy equation
-
P. A. CLARKSON and P. J. OLVER, Symmetry and the Chazy equation, J. Diff. Eqns. 124:225-246 (1996).
-
(1996)
J. Diff. Eqns.
, vol.124
, pp. 225-246
-
-
Clarkson, P.A.1
Olver, P.J.2
-
5
-
-
0011506709
-
A point symmetry group of a differential equation which cannot be found using infinitesimal methods
-
N. H. Ibragimov, M. Torrisi, and A. Valenti, Eds., Kluwer, Dordrecht
-
G. J. REID, D. T. WEIH, and A. D. WITTKOPF, A point symmetry group of a differential equation which cannot be found using infinitesimal methods, in Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics (N. H. Ibragimov, M. Torrisi, and A. Valenti, Eds.), pp. 311-316, Kluwer, Dordrecht, 1993.
-
(1993)
Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics
, pp. 311-316
-
-
Reid, G.J.1
Weih, D.T.2
Wittkopf, A.D.3
-
6
-
-
0040156071
-
Determining discrete symmetries of differential equations
-
G. GAETA and M. A. RODRÍGUEZ, Determining discrete symmetries of differential equations, Nuovo Cimento B 111:879-891 (1996).
-
(1996)
Nuovo Cimento B
, vol.111
, pp. 879-891
-
-
Gaeta, G.1
Rodríguez, M.A.2
-
13
-
-
33746715573
-
Discrete point symmetries of ordinary differential equations
-
P. E. HYDON, Discrete point symmetries of ordinary differential equations, Proc. R. Soc. Lond. A 454:1961-1972 (1998).
-
(1998)
Proc. R. Soc. Lond. A
, vol.454
, pp. 1961-1972
-
-
Hydon, P.E.1
-
14
-
-
85153276259
-
Waterloo Maple Software
-
Waterloo, Ontario, Canada
-
WATERLOO MAPLE SOFTWARE, Maple V Release 5.1, Waterloo, Ontario, Canada, 1999.
-
(1999)
Maple V Release 5.1
-
-
-
15
-
-
0034367893
-
How to construct the discrete symmetries of partial differential equations
-
P. E. HYDON, How to construct the discrete symmetries of partial differential equations, Eur. J. Appl. Math. 11:515-527 (2000).
-
(2000)
Eur. J. Appl. Math.
, vol.11
, pp. 515-527
-
-
Hydon, P.E.1
-
16
-
-
0141750991
-
How to find discrete contact symmetries
-
P. E. HYDON, How to find discrete contact symmetries, J. Nonlin. Math. Phys. 5:405-416 (1998).
-
(1998)
J. Nonlin. Math. Phys.
, vol.5
, pp. 405-416
-
-
Hydon, P.E.1
-
17
-
-
0141527848
-
How to use Lie symmetries to find discrete symmetries
-
N. H. Ibragimov, K. R. Naqvi, and E. Straume, Eds., MARS Publishers, Trondheim
-
P. E. HYDON, How to use Lie symmetries to find discrete symmetries, in Modern Group Analysis VII (N. H. Ibragimov, K. R. Naqvi, and E. Straume, Eds.), pp. 141-147, MARS Publishers, Trondheim, 1999.
-
(1999)
Modern Group Analysis VII
, pp. 141-147
-
-
Hydon, P.E.1
|