-
2
-
-
0031642929
-
An Invariant Moving Mesh Scheme for the Nonlinear Diffusion Equation
-
Budd, C.J., and Collins, G.J., 1998. An Invariant Moving Mesh Scheme for the Nonlinear Diffusion Equation. Appl. Num. Math., 26:23–39.
-
(1998)
Appl. Num. Math.
, vol.26
, pp. 23-39
-
-
Budd, C.J.1
Collins, G.J.2
-
3
-
-
0010960807
-
Boundary Conditions as Symmetry Constraints
-
Roberts M., Stewart I., (eds), Berlin: Springer, Warwick 1989, part II
-
Crawford, J.D., Golubitsky, M., Gomes, M.G.M., Knobloch, E., and Stewart, I.N., 1991. “Boundary Conditions as Symmetry Constraints”. In Singularity Theory and its Applications, Edited by:Roberts, M., and Stewart, I., 63–79. Berlin:Springer. Warwick 1989, part II
-
(1991)
Singularity Theory and its Applications
, pp. 63-79
-
-
Crawford, J.D.1
Golubitsky, M.2
Gomes, M.G.M.3
Knobloch, E.4
Stewart, I.N.5
-
4
-
-
0002424922
-
Finite Difference Methods Entirely Inheriting the Symmetry of the Original Equations
-
Ibragimov N.H., Torrisi M., Valenti A., (eds), Dordrecht: Kluwer
-
Dorodnitsyn, V., 1993. “Finite Difference Methods Entirely Inheriting the Symmetry of the Original Equations”. In Modern Group Analysis:Advanced Analytical and Computational Methods in Mathematical Physics, Edited by:Ibragimov, N.H., Torrisi, M., and Valenti, A., 191–201. Dordrecht:Kluwer.
-
(1993)
Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics
, pp. 191-201
-
-
Dorodnitsyn, V.1
-
5
-
-
0040156071
-
Determining Discrete Symmetries of Differential Equations
-
Gaeta, G., and Rodríguez, M.A., 1996. Determining Discrete Symmetries of Differential Equations. Nuovo Cimento, 111B:879–891.
-
(1996)
Nuovo Cimento
, vol.111B
, pp. 879-891
-
-
Gaeta, G.1
Rodríguez, M.A.2
-
6
-
-
0003483217
-
-
New York: Springer
-
Golubitsky, M., Stewart, I., and Schaeffer, D.G., 1988. Singularities and Groups in Bifurcation Theory, New York:Springer.
-
(1988)
Singularities and Groups in Bifurcation Theory
-
-
Golubitsky, M.1
Stewart, I.2
Schaeffer, D.G.3
-
7
-
-
33746715573
-
Discrete Point Symmetries of Ordinary Differential Equations
-
(in press)
-
Hydon, P.E., 1998. Discrete Point Symmetries of Ordinary Differential Equations. Proc. Roy. Soc. Lond. A, (in press)
-
(1998)
Proc. Roy. Soc. Lond. A
-
-
Hydon, P.E.1
-
10
-
-
0001127934
-
Numerical Integrators that Preserve Symmetries and Reversing Symmetries
-
McLachlan, R.I., Quispel, G.R.W., and Turner, G.S., 1998. Numerical Integrators that Preserve Symmetries and Reversing Symmetries. SIAM J. Numer. Anal., 35:586–599.
-
(1998)
SIAM J. Numer. Anal.
, vol.35
, pp. 586-599
-
-
McLachlan, R.I.1
Quispel, G.R.W.2
Turner, G.S.3
-
13
-
-
0011506709
-
-
Ibragimov N.H., Torrisi M., Valenti A., (eds), Dordrecht: Kluwer
-
Reid, G.J., Weih, D.T., and Wittkopf, A.D., 1993. A Point Symmetry Group of a Differential Equation which Cannot be Found Using Infinitesimal Methods, in Modern Group Analysis:Advanced Analytical and Computational Methods in Mathematical Physics, Edited by:Ibragimov, N.H., Torrisi, M., and Valenti, A., 311–316. Dordrecht:Kluwer.
-
(1993)
A Point Symmetry Group of a Differential Equation which Cannot be Found Using Infinitesimal Methods, in Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics
, pp. 311-316
-
-
Reid, G.J.1
Weih, D.T.2
Wittkopf, A.D.3
|