-
2
-
-
23044518381
-
Universal formulae for SU(n) Casson invariants of knots
-
H. Boden and A. Nicas, Universal formulae for SU(n) Casson invariants of knots. Trans. Amer. Math. Soc. (7) 352(2000), 3149-3187.
-
(2000)
Trans. Amer. Math. Soc. (7)
, vol.352
, pp. 3149-3187
-
-
Boden, H.1
Nicas, A.2
-
3
-
-
0034724470
-
Integrals for braided Hopf algebras
-
Yu. Bespalov, T. Kerler, V. Lyubashenko and V. Turaev, Integrals for braided Hopf algebras. J. Pure Appl. Algebra (2) 148(2000), 113-164.
-
(2000)
J. Pure Appl. Algebra (2)
, vol.148
, pp. 113-164
-
-
Bespalov, Yu.1
Kerler, T.2
Lyubashenko, V.3
Turaev, V.4
-
5
-
-
0042690624
-
Topological field theories and formulae of Casson and Meng - Taubes
-
Proceedings of the Kirbyfest (Berkeley, CA, 1998) (electronic)
-
S. K. Donaldson, Topological field theories and formulae of Casson and Meng - Taubes. In: Proceedings of the Kirbyfest (Berkeley, CA), Geom. Topol. Monogr. 2(1999), 87-102 (electronic).
-
(1998)
Geom. Topol. Monogr.
, vol.2
, pp. 87-102
-
-
Donaldson, S.K.1
-
6
-
-
0000805003
-
On almost cocommutative Hopf algebras
-
V. G. Drinfeld, On almost cocommutative Hopf algebras. Leningrad Math. J. (2) 1(1990), 321- 342.
-
(1990)
Leningrad Math. J. (2)
, vol.1
, pp. 321-342
-
-
Drinfeld, V.G.1
-
7
-
-
0042226918
-
Unitary representations of knot groups
-
C. Frohman, Unitary representations of knot groups. Topology (1) 32(1993), 121-144.
-
(1993)
Topology (1)
, vol.32
, pp. 121-144
-
-
Frohman, C.1
-
8
-
-
0041726551
-
The Alexander Polynomial via topological quantum field theory
-
Differential Geometry, Global Analysis, and Topology, Amer. Math. Soc. Providence, RI
-
C. Frohman and A. Nicas, The Alexander Polynomial via topological quantum field theory. In: Differential Geometry, Global Analysis, and Topology, CMS Conf. Proc. 12, Amer. Math. Soc. Providence, RI, 1991, 27-40.
-
(1991)
CMS Conf. Proc.
, vol.12
, pp. 27-40
-
-
Frohman, C.1
Nicas, A.2
-
9
-
-
0042226919
-
An intersection homology invariant for knots in a rational homology 3-sphere
-
_, An intersection homology invariant for knots in a rational homology 3-sphere. Topology (1) 33(1994), 123-158.
-
(1994)
Topology (1)
, vol.33
, pp. 123-158
-
-
-
10
-
-
0041726591
-
Moduli space of flat connections as a Poisson manifold
-
Advances in quantum field theory and statistical mechanics, 2nd Italian - Russian collaboration (Como)
-
V. V. Fock and A. A. Rosly, Moduli space of flat connections as a Poisson manifold. In: Advances in quantum field theory and statistical mechanics, 2nd Italian - Russian collaboration (Como, 1996), Internat. J. Modern Phys. B 11(1997), 3195-3206.
-
(1996)
Internat. J. Modern Phys. B
, vol.11
, pp. 3195-3206
-
-
Fock, V.V.1
Rosly, A.A.2
-
12
-
-
0003263033
-
Representations and invariants of the classical groups
-
Cambridge University Press
-
R. Goodman and N. R. Wallach, Representations and invariants of the classical groups. Encyclopedia Math. Appl. 68, Cambridge University Press, 1998.
-
(1998)
Encyclopedia Math. Appl.
, vol.68
-
-
Goodman, R.1
Wallach, N.R.2
-
13
-
-
0003963437
-
-
Wiley Classics Library, John Wiley & Sons, Inc., New York
-
P. Griffith and J. Harris, Principles of algebraic geometry. Wiley Classics Library, John Wiley & Sons, Inc., New York, 1978 and 1994.
-
(1978)
Principles of Algebraic Geometry
-
-
Griffith, P.1
Harris, J.2
-
14
-
-
0001274392
-
Invariants of links and 3-manifolds obtained from Hopf algebras
-
M. Hennings, Invariants of links and 3-manifolds obtained from Hopf algebras. J. London Math. Soc. (2) 54(1996), 594-624.
-
(1996)
J. London Math. Soc. (2)
, vol.54
, pp. 594-624
-
-
Hennings, M.1
-
15
-
-
0000909641
-
Invariants of 3-manifolds derived from finite-dimensional Hopf algebras
-
L. H. Kauffman and D. E. Radford, Invariants of 3-manifolds derived from finite-dimensional Hopf algebras. J. Knot Theory Ramifications (1) 4(1995), 131-162.
-
(1995)
J. Knot Theory Ramifications (1)
, vol.4
, pp. 131-162
-
-
Kauffman, L.H.1
Radford, D.E.2
-
16
-
-
0001093736
-
Gauss codes, quantum groups and ribbon Hopf algebras
-
L. H. Kauffman, Gauss codes, quantum groups and ribbon Hopf algebras. Rev. Math. Phys. (4) 5(1993), 735-773.
-
(1993)
Rev. Math. Phys. (4)
, vol.5
, pp. 735-773
-
-
Kauffman, L.H.1
-
18
-
-
0039131275
-
Mapping class group actions on quantum doubles
-
_, Mapping class group actions on quantum doubles. Comm. Math. Phys. 168(1994), 353- 388.
-
(1994)
Comm. Math. Phys.
, vol.168
, pp. 353-388
-
-
-
19
-
-
0001115564
-
Genealogy of nonperturbative quantum-invariants of 3-manifolds: The surgical family
-
Marcel Dekker
-
_, Genealogy of nonperturbative quantum-invariants of 3-manifolds: The surgical family. In: Geometry and Physics, Lecture Notes in Pure and Appl. Physics 184, Marcel Dekker, 1997, 503-547.
-
(1997)
Geometry and Physics, Lecture Notes in Pure and Appl. Physics
, vol.184
, pp. 503-547
-
-
-
20
-
-
0032269231
-
On the connectivity of cobordisms and half-projective TQFT's
-
_, On the connectivity of cobordisms and half-projective TQFT's. Comm. Math. Phys. (3) 198(1998), 535-590.
-
(1998)
Comm. Math. Phys. (3)
, vol.198
, pp. 535-590
-
-
-
21
-
-
0033540518
-
Bridged links and tangle presentations of cobordism categories
-
_, Bridged links and tangle presentations of cobordism categories. Adv. Math. 141(1999), 207-281.
-
(1999)
Adv. Math.
, vol.141
, pp. 207-281
-
-
-
24
-
-
0042226503
-
p-modular TQFT's, Milnor-Torsion, and the Casson-Lescop invariant
-
_, p-Modular TQFT's, Milnor-Torsion, and the Casson-Lescop Invariant. Geom. Topol. Monogr. 4(2002), 119-141.
-
(2002)
Geom. Topol. Monogr.
, vol.4
, pp. 119-141
-
-
-
25
-
-
0008371895
-
Non-semisimple topological quantum field theories for 3- manifolds with corners
-
Springer-Verlag, to appear
-
T. Kerler and V. V. Lyubashenko, Non-semisimple topological quantum field theories for 3- manifolds with corners. Lecture Notes in Math., Springer-Verlag, 2001, to appear.
-
(2001)
Lecture Notes in Math.
-
-
Kerler, T.1
Lyubashenko, V.V.2
-
27
-
-
0002861335
-
Noninvolutory Hopf algebras and 3-manifold invariants
-
G. Kuperberg, Noninvolutory Hopf algebras and 3-manifold invariants. Duke Math. J. (1) 84 (1996), 83-129; Involutory Hopf algebras and 3-manifold invariants. Internat. J. Math. (1) 2(1991), 41-66.
-
(1996)
Duke Math. J. (1)
, vol.84
, pp. 83-129
-
-
Kuperberg, G.1
-
28
-
-
0002861335
-
Involutory Hopf algebras and 3-manifold invariants
-
G. Kuperberg, Noninvolutory Hopf algebras and 3-manifold invariants. Duke Math. J. (1) 84 (1996), 83-129; Involutory Hopf algebras and 3-manifold invariants. Internat. J. Math. (1) 2(1991), 41-66.
-
(1991)
Internat. J. Math. (1)
, vol.2
, pp. 41-66
-
-
-
29
-
-
0002829606
-
An associative orthogonal bilinear form for Hopf algebras
-
R. G. Larson and M. E. Sweedler, An associative orthogonal bilinear form for Hopf algebras. Amer. J. Math. 91(1969), 75-94.
-
(1969)
Amer. J. Math.
, vol.91
, pp. 75-94
-
-
Larson, R.G.1
Sweedler, M.E.2
-
30
-
-
0003338866
-
Global surgery formula for the Casson-Walker invariant
-
Princeton University Press, Princeton, NJ
-
C. Lescop, Global surgery formula for the Casson-Walker invariant. Ann. of Math. Stud. 140, Princeton University Press, Princeton, NJ, 1996.
-
(1996)
Ann. of Math. Stud.
, vol.140
-
-
Lescop, C.1
-
31
-
-
0003210678
-
An introduction to knot theory
-
Springer Verlag
-
W. B. R. Lickorish, An Introduction to Knot Theory. Graduate Texts in Math. 127, Springer Verlag, 1997.
-
(1997)
Graduate Texts in Math.
, vol.127
-
-
Lickorish, W.B.R.1
-
32
-
-
21844485595
-
Invariants of 3-manifolds and projective representations of mapping class groups via quantum groups at roots of unity
-
V. V. Lyubashenko, Invariants of 3-manifolds and projective representations of mapping class groups via quantum groups at roots of unity. Comm. Math. Phys. 172(1995), 467-516.
-
(1995)
Comm. Math. Phys.
, vol.172
, pp. 467-516
-
-
Lyubashenko, V.V.1
-
33
-
-
0000977747
-
Braided groups and quantum Fourier transform
-
V. V. Lyubashenko and S. Majid, Braided groups and quantum Fourier transform. J. Algebra (3) 166(1994), 506-528.
-
(1994)
J. Algebra (3)
, vol.166
, pp. 506-528
-
-
Lyubashenko, V.V.1
Majid, S.2
-
35
-
-
0005520678
-
A basic course in algebraic topology
-
Springer Verlag
-
W. S. Massey, A Basic Course in Algebraic Topology. Graduate Texts in Math. 127, Springer Verlag, 1991.
-
(1991)
Graduate Texts in Math.
, vol.127
-
-
Massey, W.S.1
-
36
-
-
21744442035
-
A simple proof of integrality of quantum invariants at prime roots of unity
-
G. Masbaum and J. D. Roberts, A simple proof of integrality of quantum invariants at prime roots of unity. Math. Proc. Cambridge Philos. Soc. (3) 121(1997), 443-454.
-
(1997)
Math. Proc. Cambridge Philos. Soc. (3)
, vol.121
, pp. 443-454
-
-
Masbaum, G.1
Roberts, J.D.2
-
37
-
-
21344492904
-
A geometrical presentation of the surface mapping class group and surgery
-
S. Matveev and M. Polyak, A geometrical presentation of the surface mapping class group and surgery. Comm. Math. Phys. 160(1994), 537-550.
-
(1994)
Comm. Math. Phys.
, vol.160
, pp. 537-550
-
-
Matveev, S.1
Polyak, M.2
-
39
-
-
0000306990
-
A duality theorem for Reidemeister torsion
-
J. Milnor, A duality theorem for Reidemeister torsion. Ann. of Math. (2) 76(1962), 137-147.
-
(1962)
Ann. of Math. (2)
, vol.76
, pp. 137-147
-
-
Milnor, J.1
-
40
-
-
84973963366
-
Quantum SU(2)-invariants dominate Casson's SU(2)-invariant
-
H. Murakami, Quantum SU(2)-invariants dominate Casson's SU(2)-invariant. Math. Proc. Camb. Phil. Soc. 115(1994), 83-103.
-
(1994)
Math. Proc. Camb. Phil. Soc.
, vol.115
, pp. 83-103
-
-
Murakami, H.1
-
41
-
-
0030546896
-
A polynomial invariant of rational homology 3-spheres
-
T. Ohtsuki, A polynomial invariant of rational homology 3-spheres. Invent. Math. (2) 123 (1996), 241-257.
-
(1996)
Invent. Math. (2)
, vol.123
, pp. 241-257
-
-
Ohtsuki, T.1
-
42
-
-
0001478075
-
The order of the antipode of a finite dimensional Hopf algebra is finite
-
D. Radford, The Order of the Antipode of a Finite Dimensional Hopf Algebra is Finite. Amer. J. Math. (2) (1976)98, 333-355.
-
(1976)
Amer. J. Math. (2)
, vol.98
, pp. 333-355
-
-
Radford, D.1
-
43
-
-
0000363809
-
The trace function and Hopf algebras
-
_, The trace function and Hopf algebras. J. Algebra 163(1994), 583-622.
-
(1994)
J. Algebra
, vol.163
, pp. 583-622
-
-
-
44
-
-
0542373499
-
Invariants of 3-manifolds via link polynomials and quantum groups
-
N. Yu. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103(1991), 547-597.
-
(1991)
Invent. Math.
, vol.103
, pp. 547-597
-
-
Reshetikhin, N.Yu.1
Turaev, V.G.2
-
45
-
-
4243266551
-
S- and T -matrices for the super U(1,1)WZW model. Application to surgery and 3-manifolds invariants based on the Alexander-Conway polynomial
-
L. Rozansky and H. Saleur, S- and T -matrices for the super U(1,1)WZW model. Application to surgery and 3-manifolds invariants based on the Alexander-Conway polynomial. Nuclear Phys. B (2) 389(1993), 365-423.
-
(1993)
Nuclear Phys. B (2)
, vol.389
, pp. 365-423
-
-
Rozansky, L.1
Saleur, H.2
-
46
-
-
0000733357
-
Reidemeister torsion and the Alexander polynomial
-
V. G. Turaev, Reidemeister torsion and the Alexander polynomial. (Russian) Mat. Sb. (N.S.) (2) 18(66)(1976), 252-270.
-
(1976)
(Russian) Mat. Sb. (N.S.) (2)
, vol.18
, Issue.66
, pp. 252-270
-
-
Turaev, V.G.1
-
47
-
-
0003523790
-
Quantum invariants of knots and 3-manifolds
-
Walter de Gruyter, Berlin
-
_, Quantum invariants of knots and 3-manifolds. de Gruyter Stud. Math. 18, Walter de Gruyter, Berlin, 1994.
-
(1994)
De Gruyter Stud. Math.
, vol.18
-
-
-
48
-
-
0032218189
-
A combinatorial formulation for the Seiberg-Witten invariants of 3-manifolds
-
_, A combinatorial formulation for the Seiberg-Witten invariants of 3-manifolds. Math. Res. Lett. (5) 5(1998), 583-598.
-
(1998)
Math. Res. Lett. (5)
, vol.5
, pp. 583-598
-
-
-
49
-
-
44049114062
-
State sum invariants of 3-manifolds and quantum 6j-symbols
-
V. Turaev and O. Viro, State sum invariants of 3-manifolds and quantum 6j-symbols. Topology (4) 31(1992), 865-902.
-
(1992)
Topology (4)
, vol.31
, pp. 865-902
-
-
Turaev, V.1
Viro, O.2
-
50
-
-
0001212902
-
An elementary approach to the mapping class group of a surface
-
electronic
-
B. Wajnryb, An elementary approach to the mapping class group of a surface. Geom. Topol. 3 (1999), 405-466 (electronic); A simple presentation for the mapping class group of an orientable surface. Israel J. Math. 45(1983), 157-174.
-
(1999)
Geom. Topol.
, vol.3
, pp. 405-466
-
-
Wajnryb, B.1
-
51
-
-
51249180344
-
A simple presentation for the mapping class group of an orientable surface
-
B. Wajnryb, An elementary approach to the mapping class group of a surface. Geom. Topol. 3 (1999), 405-466 (electronic); A simple presentation for the mapping class group of an orientable surface. Israel J. Math. 45(1983), 157-174.
-
(1983)
Israel J. Math.
, vol.45
, pp. 157-174
-
-
-
52
-
-
14644388676
-
Quantum field theory and the Jones polynomial
-
E. Witten, Quantum field theory and the Jones polynomial Comm. Math. Phys. (3) 121(1989), 351-399.
-
(1989)
Comm. Math. Phys. (3)
, vol.121
, pp. 351-399
-
-
Witten, E.1
-
53
-
-
0001750410
-
Portrait of the handle as a Hopf algebra
-
Geometry and physics (Aarhus, 1995), Dekker, New York
-
D. Yetter, Portrait of the handle as a Hopf algebra. In: Geometry and physics (Aarhus, 1995), Lecture Notes in Pure and Appl. Math. 184, Dekker, New York, 1997, 481-502.
-
(1997)
Lecture Notes in Pure and Appl. Math.
, vol.184
, pp. 481-502
-
-
Yetter, D.1
|