-
2
-
-
0040328154
-
-
hep-th preprint #9310164
-
_, Spherical categories, hep-th preprint #9310164.
-
Spherical Categories
-
-
-
3
-
-
0001388868
-
Structure of topological lattice field theories in 3 dimensions
-
S. W. CHUNG, M. FUKUMA, AND A. SHAPERE, Structure of topological lattice field theories in 3 dimensions, Internat J. Modern Phys. A 9 (1994), 1305-1360.
-
(1994)
Internat J. Modern Phys. A
, vol.9
, pp. 1305-1360
-
-
Chung, S.W.1
Fukuma, M.2
Shapere, A.3
-
4
-
-
0000680015
-
Topological gauge theories and group cohomology
-
R. DIJKGRAAF AND E. WITTEN, Topological gauge theories and group cohomology, Comm. Math. Phys. 129 (1990), 393-429.
-
(1990)
Comm. Math. Phys.
, vol.129
, pp. 393-429
-
-
Dijkgraaf, R.1
Witten, E.2
-
5
-
-
0000481618
-
Quantum groups
-
Berkeley, California, Amer. Math. Soc., Providence
-
V. DRINFEL'D, "Quantum groups" in Proceedings of the International Congress of Mathematicians, 1 (Berkeley, California, 1986), Amer. Math. Soc., Providence, 1987, 798-820.
-
(1986)
Proceedings of the International Congress of Mathematicians
, vol.1
, pp. 798-820
-
-
Drinfel'd, V.1
-
8
-
-
0002309779
-
Involutory Hopf algebras and 3-manifold invariants
-
_, Involutory Hopf algebras and 3-manifold invariants, Internat. J. Math. 2 (1989), 41-61.
-
(1989)
Internat. J. Math.
, vol.2
, pp. 41-61
-
-
-
9
-
-
45449125795
-
Finite-dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple
-
R. G. LARSON AND D. E. RADFORD, Finite-dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple, J. Algebra 117 (1988), 267-289.
-
(1988)
J. Algebra
, vol.117
, pp. 267-289
-
-
Larson, R.G.1
Radford, D.E.2
-
10
-
-
84968495738
-
Canonical bases arising from quantized enveloping algebras
-
G. LUSZTIG, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447-498.
-
(1990)
J. Amer. Math. Soc.
, vol.3
, pp. 447-498
-
-
Lusztig, G.1
-
11
-
-
0001478075
-
The order of antipode of a finite-dimensional Hopf algebra is finite
-
D. E. RADFORD, The order of antipode of a finite-dimensional Hopf algebra is finite, Amer. J. Math. 98 (1976), 333-335.
-
(1976)
Amer. J. Math.
, vol.98
, pp. 333-335
-
-
Radford, D.E.1
-
12
-
-
0000363809
-
The trace function and Hopf algebras
-
_, The trace function and Hopf algebras, J. Algebra 163 (1994), 583-622.
-
(1994)
J. Algebra
, vol.163
, pp. 583-622
-
-
-
13
-
-
0039143916
-
-
private communication
-
N. YU. RESHETIKHIN, private communication.
-
-
-
Reshetikhin, N.Yu.1
-
14
-
-
34249960869
-
Ribbon graphs and their invariants derived from quantum groups
-
N. YU. RESHETIKHIN AND V. G. TURAEV, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), 1-26.
-
(1990)
Comm. Math. Phys.
, vol.127
, pp. 1-26
-
-
Reshetikhin, N.Yu.1
Turaev, V.G.2
-
15
-
-
0542373499
-
Invariants of 3-manifolds via link polynomials and quantum groups
-
_, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math., 103 (1991), 547-597.
-
(1991)
Invent. Math.
, vol.103
, pp. 547-597
-
-
-
16
-
-
0003402324
-
-
W. A. Benjamin, Inc., New York
-
M. E. SWEEDLER, Hopf Algebras, W. A. Benjamin, Inc., New York, 1969.
-
(1969)
Hopf Algebras
-
-
Sweedler, M.E.1
-
17
-
-
0000316102
-
Quantum invariants of 3-manifolds associated with classical simple lie algebras
-
V. G. TURAEV AND H. WENZL, Quantum invariants of 3-manifolds associated with classical simple Lie algebras, Internat. J. Math. 4 (1993), 323-358
-
(1993)
Internat. J. Math.
, vol.4
, pp. 323-358
-
-
Turaev, V.G.1
Wenzl, H.2
|