메뉴 건너뛰기




Volumn 110, Issue 2-12, 1999, Pages 2778-2784

A statistical rate constant calculation method based on Monte Carlo transition state theory and application to unimolecular dissociation of HFCO

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0042765052     PISSN: 00219606     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.477921     Document Type: Article
Times cited : (5)

References (63)
  • 4
  • 5
    • 0005499403 scopus 로고    scopus 로고
    • A. J. Marks, J. Chem. Phys. 108, 1438 (1998); 106, 6977 (1997).
    • (1997) J. Chem. Phys. , vol.106 , pp. 6977
  • 11
    • 26444512687 scopus 로고
    • Chem. Phys. Lett. 182, 455 (1991).
    • (1991) Chem. Phys. Lett. , vol.182 , pp. 455
  • 20
    • 0042814651 scopus 로고    scopus 로고
    • note
    • Although an improved intuitive dividing surface can be variationally determined so that the equilibrium flux through the dividing surface is minimized for variation in the location of the dividing surface, the artificialness for the shape or the orientation of the dividing surface will still remain.
  • 23
    • 51149217934 scopus 로고
    • The equivalence between the Grote-Hynes theory [R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980)] and the conventional TST has been clarified by several researchers. This equivalence is attributed to the fact that the conventional TST dividing surface, a hypersurface at a transition state perpendicular to the reactive normal coordinate, is a well-defined one which causes no barrier recrossing within a second-order approximation. The discussion appears in the following papers: G. van der Zwan and J. T. Hynes, J. Chem. Phys. 78, 4174 (1983); Chem. Phys. 90, 21 (1984); E. Pollak, J. Chem. Phys. 85, 865 (1986); M. Nagaoka, N. Yoshida, and T. Yamabe, Int. J. Quantum Chem. 60, 287 (1996); Y. Okuno, J. Chem. Phys. 105, 5817 (1996).
    • (1980) J. Chem. Phys. , vol.73 , pp. 2715
    • Grote, R.F.1    Hynes, J.T.2
  • 24
    • 33748274620 scopus 로고
    • The equivalence between the Grote-Hynes theory [R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980)] and the conventional TST has been clarified by several researchers. This equivalence is attributed to the fact that the conventional TST dividing surface, a hypersurface at a transition state perpendicular to the reactive normal coordinate, is a well- defined one which causes no barrier recrossing within a second-order approximation. The discussion appears in the following papers: G. van der Zwan and J. T. Hynes, J. Chem. Phys. 78, 4174 (1983); Chem. Phys. 90, 21 (1984); E. Pollak, J. Chem. Phys. 85, 865 (1986); M. Nagaoka, N. Yoshida, and T. Yamabe, Int. J. Quantum Chem. 60, 287 (1996); Y. Okuno, J. Chem. Phys. 105, 5817 (1996).
    • (1983) J. Chem. Phys. , vol.78 , pp. 4174
    • Van Der Zwan, G.1    Hynes, J.T.2
  • 25
    • 33748274620 scopus 로고
    • The equivalence between the Grote-Hynes theory [R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980)] and the conventional TST has been clarified by several researchers. This equivalence is attributed to the fact that the conventional TST dividing surface, a hypersurface at a transition state perpendicular to the reactive normal coordinate, is a well- defined one which causes no barrier recrossing within a second-order approximation. The discussion appears in the following papers: G. van der Zwan and J. T. Hynes, J. Chem. Phys. 78, 4174 (1983); Chem. Phys. 90, 21 (1984); E. Pollak, J. Chem. Phys. 85, 865 (1986); M. Nagaoka, N. Yoshida, and T. Yamabe, Int. J. Quantum Chem. 60, 287 (1996); Y. Okuno, J. Chem. Phys. 105, 5817 (1996).
    • (1984) Chem. Phys. , vol.90 , pp. 21
  • 26
    • 36549094554 scopus 로고
    • The equivalence between the Grote-Hynes theory [R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980)] and the conventional TST has been clarified by several researchers. This equivalence is attributed to the fact that the conventional TST dividing surface, a hypersurface at a transition state perpendicular to the reactive normal coordinate, is a well- defined one which causes no barrier recrossing within a second-order approximation. The discussion appears in the following papers: G. van der Zwan and J. T. Hynes, J. Chem. Phys. 78, 4174 (1983); Chem. Phys. 90, 21 (1984); E. Pollak, J. Chem. Phys. 85, 865 (1986); M. Nagaoka, N. Yoshida, and T. Yamabe, Int. J. Quantum Chem. 60, 287 (1996); Y. Okuno, J. Chem. Phys. 105, 5817 (1996).
    • (1986) J. Chem. Phys. , vol.85 , pp. 865
    • Pollak, E.1
  • 27
    • 0010785040 scopus 로고    scopus 로고
    • The equivalence between the Grote-Hynes theory [R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980)] and the conventional TST has been clarified by several researchers. This equivalence is attributed to the fact that the conventional TST dividing surface, a hypersurface at a transition state perpendicular to the reactive normal coordinate, is a well- defined one which causes no barrier recrossing within a second-order approximation. The discussion appears in the following papers: G. van der Zwan and J. T. Hynes, J. Chem. Phys. 78, 4174 (1983); Chem. Phys. 90, 21 (1984); E. Pollak, J. Chem. Phys. 85, 865 (1986); M. Nagaoka, N. Yoshida, and T. Yamabe, Int. J. Quantum Chem. 60, 287 (1996); Y. Okuno, J. Chem. Phys. 105, 5817 (1996).
    • (1996) Int. J. Quantum Chem. , vol.60 , pp. 287
    • Nagaoka, M.1    Yoshida, N.2    Yamabe, T.3
  • 28
    • 0001239563 scopus 로고    scopus 로고
    • The equivalence between the Grote-Hynes theory [R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980)] and the conventional TST has been clarified by several researchers. This equivalence is attributed to the fact that the conventional TST dividing surface, a hypersurface at a transition state perpendicular to the reactive normal coordinate, is a well- defined one which causes no barrier recrossing within a second-order approximation. The discussion appears in the following papers: G. van der Zwan and J. T. Hynes, J. Chem. Phys. 78, 4174 (1983); Chem. Phys. 90, 21 (1984); E. Pollak, J. Chem. Phys. 85, 865 (1986); M. Nagaoka, N. Yoshida, and T. Yamabe, Int. J. Quantum Chem. 60, 287 (1996); Y. Okuno, J. Chem. Phys. 105, 5817 (1996).
    • (1996) J. Chem. Phys. , vol.105 , pp. 5817
    • Okuno, Y.1
  • 29
    • 0041312199 scopus 로고    scopus 로고
    • T. Komatsuzaki and M. Nagaoka (Ref. 20) have proposed a more appropriate dividing surface defined not only in the configuration space but also in the momentum space beyond a second-order approximation. However, this subject is beyond the scope of the present study.
    • T. Komatsuzaki and M. Nagaoka (Ref. 20) have proposed a more appropriate dividing surface defined not only in the configuration space but also in the momentum space beyond a second-order approximation. However, this subject is beyond the scope of the present study.
  • 36
    • 0041312196 scopus 로고
    • R. S. Dumont, J. Chem. Phys. 96, 2203 (1992); 95, 9172 (1991).
    • (1991) J. Chem. Phys. , vol.95 , pp. 9172
  • 39
    • 0041812784 scopus 로고    scopus 로고
    • Rigorously speaking, Eq. (2) of Ref. 30 is an incorrect one. The correct IRC equations appear in Ref. 29 and the references cited therein
    • Rigorously speaking, Eq. (2) of Ref. 30 is an incorrect one. The correct IRC equations appear in Ref. 29 and the references cited therein.
  • 41
    • 33947293427 scopus 로고
    • D. G. Truhlar and A. Kuppermann, J. Chem. Phys. 56, 2232 (1972); J. Am. Chem. Soc. 93, 1840 (1971).
    • (1971) J. Am. Chem. Soc. , vol.93 , pp. 1840
  • 57
    • 0042814642 scopus 로고
    • Gakkai Shuppan Center, Tokyo, (in Japanese)
    • For employment of these vectors, we followed the study of Nakagawa: see I. Nakagawa, Shindou Bunkougaku (Gakkai Shuppan Center, Tokyo, 1987) (in Japanese).
    • (1987) Shindou Bunkougaku
    • Nakagawa, I.1
  • 63
    • 0006457946 scopus 로고    scopus 로고
    • and references therein
    • Y. Okuno, Int. J. Quantum Chem. 68, 261 (1998), and references therein.
    • (1998) Int. J. Quantum Chem. , vol.68 , pp. 261
    • Okuno, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.