-
1
-
-
0030218764
-
-
For a review, see D. G. Truhlar, B. C. Garrett, and S. J. Klippenstein, J. Phys. Chem. 100, 12771 (1996).
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 12771
-
-
Truhlar, D.G.1
Garrett, B.C.2
Klippenstein, S.J.3
-
4
-
-
0000194703
-
-
A. J. Marks, J. Chem. Phys. 108, 1438 (1998); 106, 6977 (1997).
-
(1998)
J. Chem. Phys.
, vol.108
, pp. 1438
-
-
Marks, A.J.1
-
5
-
-
0005499403
-
-
A. J. Marks, J. Chem. Phys. 108, 1438 (1998); 106, 6977 (1997).
-
(1997)
J. Chem. Phys.
, vol.106
, pp. 6977
-
-
-
11
-
-
26444512687
-
-
Chem. Phys. Lett. 182, 455 (1991).
-
(1991)
Chem. Phys. Lett.
, vol.182
, pp. 455
-
-
-
12
-
-
0006785735
-
-
T. D. Sewell, H. W. Schranz, D. L. Thompson, and L. M. Raff, J. Chem. Phys. 95, 8089 (1991).
-
(1991)
J. Chem. Phys.
, vol.95
, pp. 8089
-
-
Sewell, T.D.1
Schranz, H.W.2
Thompson, D.L.3
Raff, L.M.4
-
20
-
-
0042814651
-
-
note
-
Although an improved intuitive dividing surface can be variationally determined so that the equilibrium flux through the dividing surface is minimized for variation in the location of the dividing surface, the artificialness for the shape or the orientation of the dividing surface will still remain.
-
-
-
-
23
-
-
51149217934
-
-
The equivalence between the Grote-Hynes theory [R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980)] and the conventional TST has been clarified by several researchers. This equivalence is attributed to the fact that the conventional TST dividing surface, a hypersurface at a transition state perpendicular to the reactive normal coordinate, is a well-defined one which causes no barrier recrossing within a second-order approximation. The discussion appears in the following papers: G. van der Zwan and J. T. Hynes, J. Chem. Phys. 78, 4174 (1983); Chem. Phys. 90, 21 (1984); E. Pollak, J. Chem. Phys. 85, 865 (1986); M. Nagaoka, N. Yoshida, and T. Yamabe, Int. J. Quantum Chem. 60, 287 (1996); Y. Okuno, J. Chem. Phys. 105, 5817 (1996).
-
(1980)
J. Chem. Phys.
, vol.73
, pp. 2715
-
-
Grote, R.F.1
Hynes, J.T.2
-
24
-
-
33748274620
-
-
The equivalence between the Grote-Hynes theory [R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980)] and the conventional TST has been clarified by several researchers. This equivalence is attributed to the fact that the conventional TST dividing surface, a hypersurface at a transition state perpendicular to the reactive normal coordinate, is a well- defined one which causes no barrier recrossing within a second-order approximation. The discussion appears in the following papers: G. van der Zwan and J. T. Hynes, J. Chem. Phys. 78, 4174 (1983); Chem. Phys. 90, 21 (1984); E. Pollak, J. Chem. Phys. 85, 865 (1986); M. Nagaoka, N. Yoshida, and T. Yamabe, Int. J. Quantum Chem. 60, 287 (1996); Y. Okuno, J. Chem. Phys. 105, 5817 (1996).
-
(1983)
J. Chem. Phys.
, vol.78
, pp. 4174
-
-
Van Der Zwan, G.1
Hynes, J.T.2
-
25
-
-
33748274620
-
-
The equivalence between the Grote-Hynes theory [R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980)] and the conventional TST has been clarified by several researchers. This equivalence is attributed to the fact that the conventional TST dividing surface, a hypersurface at a transition state perpendicular to the reactive normal coordinate, is a well- defined one which causes no barrier recrossing within a second-order approximation. The discussion appears in the following papers: G. van der Zwan and J. T. Hynes, J. Chem. Phys. 78, 4174 (1983); Chem. Phys. 90, 21 (1984); E. Pollak, J. Chem. Phys. 85, 865 (1986); M. Nagaoka, N. Yoshida, and T. Yamabe, Int. J. Quantum Chem. 60, 287 (1996); Y. Okuno, J. Chem. Phys. 105, 5817 (1996).
-
(1984)
Chem. Phys.
, vol.90
, pp. 21
-
-
-
26
-
-
36549094554
-
-
The equivalence between the Grote-Hynes theory [R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980)] and the conventional TST has been clarified by several researchers. This equivalence is attributed to the fact that the conventional TST dividing surface, a hypersurface at a transition state perpendicular to the reactive normal coordinate, is a well- defined one which causes no barrier recrossing within a second-order approximation. The discussion appears in the following papers: G. van der Zwan and J. T. Hynes, J. Chem. Phys. 78, 4174 (1983); Chem. Phys. 90, 21 (1984); E. Pollak, J. Chem. Phys. 85, 865 (1986); M. Nagaoka, N. Yoshida, and T. Yamabe, Int. J. Quantum Chem. 60, 287 (1996); Y. Okuno, J. Chem. Phys. 105, 5817 (1996).
-
(1986)
J. Chem. Phys.
, vol.85
, pp. 865
-
-
Pollak, E.1
-
27
-
-
0010785040
-
-
The equivalence between the Grote-Hynes theory [R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980)] and the conventional TST has been clarified by several researchers. This equivalence is attributed to the fact that the conventional TST dividing surface, a hypersurface at a transition state perpendicular to the reactive normal coordinate, is a well- defined one which causes no barrier recrossing within a second-order approximation. The discussion appears in the following papers: G. van der Zwan and J. T. Hynes, J. Chem. Phys. 78, 4174 (1983); Chem. Phys. 90, 21 (1984); E. Pollak, J. Chem. Phys. 85, 865 (1986); M. Nagaoka, N. Yoshida, and T. Yamabe, Int. J. Quantum Chem. 60, 287 (1996); Y. Okuno, J. Chem. Phys. 105, 5817 (1996).
-
(1996)
Int. J. Quantum Chem.
, vol.60
, pp. 287
-
-
Nagaoka, M.1
Yoshida, N.2
Yamabe, T.3
-
28
-
-
0001239563
-
-
The equivalence between the Grote-Hynes theory [R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980)] and the conventional TST has been clarified by several researchers. This equivalence is attributed to the fact that the conventional TST dividing surface, a hypersurface at a transition state perpendicular to the reactive normal coordinate, is a well- defined one which causes no barrier recrossing within a second-order approximation. The discussion appears in the following papers: G. van der Zwan and J. T. Hynes, J. Chem. Phys. 78, 4174 (1983); Chem. Phys. 90, 21 (1984); E. Pollak, J. Chem. Phys. 85, 865 (1986); M. Nagaoka, N. Yoshida, and T. Yamabe, Int. J. Quantum Chem. 60, 287 (1996); Y. Okuno, J. Chem. Phys. 105, 5817 (1996).
-
(1996)
J. Chem. Phys.
, vol.105
, pp. 5817
-
-
Okuno, Y.1
-
29
-
-
0041312199
-
-
T. Komatsuzaki and M. Nagaoka (Ref. 20) have proposed a more appropriate dividing surface defined not only in the configuration space but also in the momentum space beyond a second-order approximation. However, this subject is beyond the scope of the present study.
-
T. Komatsuzaki and M. Nagaoka (Ref. 20) have proposed a more appropriate dividing surface defined not only in the configuration space but also in the momentum space beyond a second-order approximation. However, this subject is beyond the scope of the present study.
-
-
-
-
31
-
-
0001420829
-
-
E. S. Severin, B. C. Freasier, N. D. Hamer, D. L. Jolly, and S. Nordholm, Chem. Phys. Lett. 57, 117 (1978).
-
(1978)
Chem. Phys. Lett.
, vol.57
, pp. 117
-
-
Severin, E.S.1
Freasier, B.C.2
Hamer, N.D.3
Jolly, D.L.4
Nordholm, S.5
-
36
-
-
0041312196
-
-
R. S. Dumont, J. Chem. Phys. 96, 2203 (1992); 95, 9172 (1991).
-
(1991)
J. Chem. Phys.
, vol.95
, pp. 9172
-
-
-
39
-
-
0041812784
-
-
Rigorously speaking, Eq. (2) of Ref. 30 is an incorrect one. The correct IRC equations appear in Ref. 29 and the references cited therein
-
Rigorously speaking, Eq. (2) of Ref. 30 is an incorrect one. The correct IRC equations appear in Ref. 29 and the references cited therein.
-
-
-
-
41
-
-
33947293427
-
-
D. G. Truhlar and A. Kuppermann, J. Chem. Phys. 56, 2232 (1972); J. Am. Chem. Soc. 93, 1840 (1971).
-
(1971)
J. Am. Chem. Soc.
, vol.93
, pp. 1840
-
-
-
42
-
-
0004003691
-
-
Dover, New York
-
E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations (Dover, New York, 1955).
-
(1955)
Molecular Vibrations
-
-
Wilson E.B., Jr.1
Decius, J.C.2
Cross, P.C.3
-
50
-
-
0001686999
-
-
W. H. Green, D. Jayatilaka, A. Willetts, R. D. Amos, and N. C. Handy, J. Chem. Phys. 93, 4965 (1990).
-
(1990)
J. Chem. Phys.
, vol.93
, pp. 4965
-
-
Green, W.H.1
Jayatilaka, D.2
Willetts, A.3
Amos, R.D.4
Handy, N.C.5
-
52
-
-
0004133516
-
-
Gaussian, Inc., Pittsburgh, PA
-
M. J. Frisch, G. W. Tracks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, GAUSSIAN 94 (Revision E.2) (Gaussian, Inc., Pittsburgh, PA, 1995).
-
(1995)
GAUSSIAN 94 (Revision E.2)
-
-
Frisch, M.J.1
Tracks, G.W.2
Schlegel, H.B.3
Gill, P.M.W.4
Johnson, B.G.5
Robb, M.A.6
Cheeseman, J.R.7
Keith, T.8
Petersson, G.A.9
Montgomery, J.A.10
Raghavachari, K.11
Al-Laham, M.A.12
Zakrzewski, V.G.13
Ortiz, J.V.14
Foresman, J.B.15
Cioslowski, J.16
Stefanov, B.B.17
Nanayakkara, A.18
Challacombe, M.19
Peng, C.Y.20
Ayala, P.Y.21
Chen, W.22
Wong, M.W.23
Andres, J.L.24
Replogle, E.S.25
Gomperts, R.26
Martin, R.L.27
Fox, D.J.28
Binkley, J.S.29
Defrees, D.J.30
Baker, J.31
Stewart, J.P.32
Head-Gordon, M.33
Gonzalez, C.34
Pople, J.A.35
more..
-
56
-
-
35848953179
-
-
American Institute of Physics, New York
-
M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables (American Institute of Physics, New York, 1986).
-
(1986)
JANAF Thermochemical Tables
-
-
Chase, M.W.1
Davies, C.A.2
Downey, J.R.3
Frurip, D.J.4
McDonald, R.A.5
Syverud, A.N.6
-
57
-
-
0042814642
-
-
Gakkai Shuppan Center, Tokyo, (in Japanese)
-
For employment of these vectors, we followed the study of Nakagawa: see I. Nakagawa, Shindou Bunkougaku (Gakkai Shuppan Center, Tokyo, 1987) (in Japanese).
-
(1987)
Shindou Bunkougaku
-
-
Nakagawa, I.1
-
63
-
-
0006457946
-
-
and references therein
-
Y. Okuno, Int. J. Quantum Chem. 68, 261 (1998), and references therein.
-
(1998)
Int. J. Quantum Chem.
, vol.68
, pp. 261
-
-
Okuno, Y.1
|