-
1
-
-
0037016486
-
-
Z. L. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, Science 295, 102 (2002).
-
(2002)
Science
, vol.295
, pp. 102
-
-
Yuan, Z.L.1
Kardynal, B.E.2
Stevenson, R.M.3
Shields, A.J.4
Lobo, C.J.5
Cooper, K.6
Beattie, N.S.7
Ritchie, D.A.8
Pepper, M.9
-
2
-
-
0034817777
-
-
C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, Phys. Rev. Lett. 86, 1502 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 1502
-
-
Santori, C.1
Pelton, M.2
Solomon, G.3
Dale, Y.4
Yamamoto, Y.5
-
3
-
-
0033545306
-
-
J. Kim, O. Benson, H. Kan, and Y. Yamamoto, Nature (London) 397, 500 (1999).
-
(1999)
Nature (London)
, vol.397
, pp. 500
-
-
Kim, J.1
Benson, O.2
Kan, H.3
Yamamoto, Y.4
-
4
-
-
0343536431
-
-
G. Brassard, N. Lutkenhaus, T. Mor, and B. C. Sanders, Phys. Rev. Lett. 85, 1330 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 1330
-
-
Brassard, G.1
Lutkenhaus, N.2
Mor, T.3
Sanders, B.C.4
-
5
-
-
0035471948
-
-
J. Calsamiglia, S. M. Barnett, N. Lutkenhaus, and K. A. Suominen, Phys. Rev. A 64, 043814 (2001).
-
(2001)
Phys. Rev. A
, vol.64
, pp. 043814
-
-
Calsamiglia, J.1
Barnett, S.M.2
Lutkenhaus, N.3
Suominen, K.A.4
-
6
-
-
4243836477
-
-
G. Ribordy, J. Brendel, J. D. Gautier, N. Gisin, and H. Zbinden, Phys. Rev. A 63, 012309 (2001).
-
(2001)
Phys. Rev. A
, vol.63
, pp. 012309
-
-
Ribordy, G.1
Brendel, J.2
Gautier, J.D.3
Gisin, N.4
Zbinden, H.5
-
7
-
-
0000421107
-
-
J. G. Rarity, T. E. Wall, K. D. Ridley, P. C. M. Owens, and P. R. Tapster, Appl. Opt. 39, 6746 (2000).
-
(2000)
Appl. Opt.
, vol.39
, pp. 6746
-
-
Rarity, J.G.1
Wall, T.E.2
Ridley, K.D.3
Owens, P.C.M.4
Tapster, P.R.5
-
8
-
-
0028531266
-
-
P. C. M. Owens, J. G. Rarity, P. R. Tapster, D. Knight, and P. D. Townsend, Appl. Opt. 33, 6895 (1994).
-
(1994)
Appl. Opt.
, vol.33
, pp. 6895
-
-
Owens, P.C.M.1
Rarity, J.G.2
Tapster, P.R.3
Knight, D.4
Townsend, P.D.5
-
9
-
-
0005586932
-
-
J. S. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, Appl. Phys. Lett. 74, 902 (1999b).
-
(1999)
Appl. Phys. Lett.
, vol.74
, pp. 902
-
-
Kim, J.S.1
Takeuchi, S.2
Yamamoto, Y.3
Hogue, H.H.4
-
10
-
-
0009391822
-
-
R. W. Romani, A. J. Miller, B. Cabrera, S. W. Nam, and J. M. Martinis, Astrophys. J. 563, 221 (2001).
-
(2001)
Astrophys. J.
, vol.563
, pp. 221
-
-
Romani, R.W.1
Miller, A.J.2
Cabrera, B.3
Nam, S.W.4
Martinis, J.M.5
-
12
-
-
0031474227
-
-
D. A. Wollman, K. D. Irwin, G. C. Hilton, L. L. Dulcie, D. E. Newbury, and J. M. Martinis, J. Microsc. 188, 196 (1997).
-
(1997)
J. Microsc.
, vol.188
, pp. 196
-
-
Wollman, D.A.1
Irwin, K.D.2
Hilton, G.C.3
Dulcie, L.L.4
Newbury, D.E.5
Martinis, J.M.6
-
14
-
-
1842469883
-
-
B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, Appl. Phys. Lett. 73, 735 (1998).
-
(1998)
Appl. Phys. Lett.
, vol.73
, pp. 735
-
-
Cabrera, B.1
Clarke, R.M.2
Colling, P.3
Miller, A.J.4
Nam, S.5
Romani, R.W.6
-
16
-
-
0032292753
-
-
H. Zbinden, H. Bechmann-Pasquinucci, N. Gisin, and G. Ribordy, Appl. Phys. B: Lasers Opt. 67, 743 (1998).
-
(1998)
Appl. Phys. B: Lasers Opt.
, vol.67
, pp. 743
-
-
Zbinden, H.1
Bechmann-Pasquinucci, H.2
Gisin, N.3
Ribordy, G.4
-
18
-
-
0041791256
-
-
In practice the dark-count rate has been limited by factors such as stray light scattering into the optical path. Of course, this is not an intrinsic detector limitation and can be mitigated by proper spectral filtering
-
In practice the dark-count rate has been limited by factors such as stray light scattering into the optical path. Of course, this is not an intrinsic detector limitation and can be mitigated by proper spectral filtering.
-
-
-
-
21
-
-
0038600698
-
-
P. A. Hiskett, G. S. Buller, A. Y. Loudon, J. M. Smith, I. Gontijo, A. C. Walker, P. D. Townsend, and M. J. Robertson, Appl. Opt. 39, 6818 (2000).
-
(2000)
Appl. Opt.
, vol.39
, pp. 6818
-
-
Hiskett, P.A.1
Buller, G.S.2
Loudon, A.Y.3
Smith, J.M.4
Gontijo, I.5
Walker, A.C.6
Townsend, P.D.7
Robertson, M.J.8
-
23
-
-
0042292372
-
-
note
-
6 for conventional devices, a constant 5 dB of optical losses in the receiver, and fiber losses of 0.2 dB/km at a transmission wavelength of 1550 nm. Note that μ=0.001 is significantly lower than is typically used in existing quantum cryptography implementations due to our requirement that the system be unconditionally secure against even the strongest individual-bit eavesdropping attack.
-
-
-
|