-
3
-
-
0034020065
-
-
See, for example, D. W. Bechert, M. Bruse, W. Hage, and R. Meyer, Naturwissenschaften 87, 157 (2000).
-
(2000)
Naturwissenschaften
, vol.87
, pp. 157
-
-
Bechert, D.W.1
Bruse, M.2
Hage, W.3
Meyer, R.4
-
6
-
-
0001083922
-
-
P. Ramvall, N. Carlsson, P. Omling, L. Samuelson, W. Seifert, M. Stolze, and Q. Wang, Appl. Phys. Lett. 68, 1111 (1996).
-
(1996)
Appl. Phys. Lett.
, vol.68
, pp. 1111
-
-
Ramvall, P.1
Carlsson, N.2
Omling, P.3
Samuelson, L.4
Seifert, W.5
Stolze, M.6
Wang, Q.7
-
7
-
-
0041187001
-
-
note
-
We point out that any accumulation of electrons in the upward direction can only happen in the nonlinear electron transport regime, i.e., with a finite applied voltage, where the electron transmission along the arrows in Fig. 1 is enhanced by the applied electric field while the transmission in the reverse direction is less affected.
-
-
-
-
8
-
-
0000550185
-
-
A. M. Song, A. Lorke, A. Kriele, J. P. Kotthaus, W. Wegscheider, and M. Bichler, Phys. Rev. Lett. 80, 3831 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 3831
-
-
Song, A.M.1
Lorke, A.2
Kriele, A.3
Kotthaus, J.P.4
Wegscheider, W.5
Bichler, M.6
-
9
-
-
0033579328
-
-
H. Linke, T. E. Humphrey, A. Lofgren, A. O. Sushkov, R. Newbury, R. P. Taylor, and P. Omling, Science 286, 2314 (1999).
-
(1999)
Science
, vol.286
, pp. 2314
-
-
Linke, H.1
Humphrey, T.E.2
Lofgren, A.3
Sushkov, A.O.4
Newbury, R.5
Taylor, R.P.6
Omling, P.7
-
12
-
-
0032094048
-
-
which, however, has a completely different working principle. The direction of the driving (input) electric field was along the triangle apexes and it was related to the asymmetric potential drops inside the gaps of the triangles as discussed in, for example, Ref. 10. In contrast, our structure relies on no barrier at all and it is only the triangular boundaries that guide the electrons. Also, the driving field is in the lateral direction.
-
The nanomaterial looks similar to a device with arrays of micrometer-sized triangular antidots [A. Lorke, S. Wimmer, B. Jager, J. P. Kotthaus, W. Wegscheider, and M. Bichler, Physica B 249, 312 (1998)], which, however, has a completely different working principle. The direction of the driving (input) electric field was along the triangle apexes and it was related to the asymmetric potential drops inside the gaps of the triangles as discussed in, for example, Ref. 10. In contrast, our structure relies on no barrier at all and it is only the triangular boundaries that guide the electrons. Also, the driving field is in the lateral direction.
-
(1998)
Physica B
, vol.249
, pp. 312
-
-
Lorke, A.1
Wimmer, S.2
Jager, B.3
Kotthaus, J.P.4
Wegscheider, W.5
Bichler, M.6
-
14
-
-
0001529854
-
-
B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.60
, pp. 848
-
-
Van Wees, B.J.1
Van Houten, H.2
Beenakker, C.W.J.3
Williamson, J.G.4
Kouwenhoven, L.P.5
Van Der Marel, D.6
Foxon, C.T.7
-
15
-
-
0001344261
-
-
D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys.: Condens. Matter 21, L209 (1988).
-
(1988)
J. Phys.: Condens. Matter
, vol.21
-
-
Wharam, D.A.1
Thornton, T.J.2
Newbury, R.3
Pepper, M.4
Ahmed, H.5
Frost, J.E.F.6
Hasko, D.G.7
Peacock, D.C.8
Ritchie, D.A.9
Jones, G.A.C.10
-
16
-
-
0346335938
-
-
A. M. Song, S. Manus, M. Streibl, A. Lorke, J. P. Kotthaus, W. Wegscheider, and M. Bichler, Superlattices Microstruct. 25, 269 (1999).
-
(1999)
Superlattices Microstruct.
, vol.25
, pp. 269
-
-
Song, A.M.1
Manus, S.2
Streibl, M.3
Lorke, A.4
Kotthaus, J.P.5
Wegscheider, W.6
Bichler, M.7
|