메뉴 건너뛰기




Volumn 9, Issue 5, 1997, Pages 937-958

Hybrid Learning of Mapping and Its Jacobian in Multilayer Neural Networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0039224634     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/neco.1997.9.5.937     Document Type: Article
Times cited : (15)

References (15)
  • 2
    • 0026727494 scopus 로고
    • Approximation of a function and its derivative with a neural network
    • Cardaliaguet, P., & Euvrard, G. (1992). Approximation of a function and its derivative with a neural network. Neural Networks 5:207-220.
    • (1992) Neural Networks , vol.5 , pp. 207-220
    • Cardaliaguet, P.1    Euvrard, G.2
  • 3
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2:303-314.
    • (1989) Math. Control Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 4
    • 0029182199 scopus 로고
    • An accelerated learning algorithm for multilayer perceptrons: Optimization layer by layer
    • Ergezinger, S., & Thomsen, E. (1995). An accelerated learning algorithm for multilayer perceptrons: Optimization layer by layer. IEEE Trans. Neural Network 6(1):31-42.
    • (1995) IEEE Trans. Neural Network , vol.6 , Issue.1 , pp. 31-42
    • Ergezinger, S.1    Thomsen, E.2
  • 5
    • 0029375452 scopus 로고
    • Learning and generalization in radial basis function
    • Freeman, J. A. S. & Saad, D. (1995). Learning and generalization in radial basis function, Neural Computation 7(8):1000-1020.
    • (1995) Neural Computation , vol.7 , Issue.8 , pp. 1000-1020
    • Freeman, J.A.S.1    Saad, D.2
  • 6
    • 0026449851 scopus 로고
    • On learning the derivatives of an unknown mapping with multilayer feedforward networks
    • Gallant, A. R., & White, H. (1992). On learning the derivatives of an unknown mapping with multilayer feedforward networks. Neural Networks 5:129-138.
    • (1992) Neural Networks , vol.5 , pp. 129-138
    • Gallant, A.R.1    White, H.2
  • 7
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks 2:359-399.
    • (1989) Neural Networks , vol.2 , pp. 359-399
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 8
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
    • Hornik, K., Stinchcombe, M., & White, H. (1990). Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks 3:551-560.
    • (1990) Neural Networks , vol.3 , pp. 551-560
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 9
    • 0041939082 scopus 로고
    • An input tracking control system and an input estimation system using a feedforward model on neural network
    • Iwata, M. & Kitamura, S. (1994). An input tracking control system and an input estimation system using a feedforward model on neural network (in Japanese). Transactions of the Society of Instrument and Control Engineers 30(3):303-309.
    • (1994) Transactions of the Society of Instrument and Control Engineers , vol.30 , Issue.3 , pp. 303-309
    • Iwata, M.1    Kitamura, S.2
  • 10
    • 0029271757 scopus 로고
    • Fast neural learning and control of discrete-time nonlinear systems
    • Jin, L., Nikiforuk, P. N. & Gupta, M. (1995). Fast neural learning and control of discrete-time nonlinear systems. IEEE Trans. Systems, Man and Cybernetics 25(3):478-488.
    • (1995) IEEE Trans. Systems, Man and Cybernetics , vol.25 , Issue.3 , pp. 478-488
    • Jin, L.1    Nikiforuk, P.N.2    Gupta, M.3
  • 11
    • 44049116478 scopus 로고
    • Forward models: Supervised learning with a distal teacher
    • Jordan, M. I., & Rumelhart, D. E. (1992). Forward models: Supervised learning with a distal teacher. Cognitive Science 16:307-354.
    • (1992) Cognitive Science , vol.16 , pp. 307-354
    • Jordan, M.I.1    Rumelhart, D.E.2
  • 12
    • 0000482137 scopus 로고    scopus 로고
    • On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions
    • Niyogi, P., & Girosi, F. (1996). On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions. Neural Computation 8(4):819-842.
    • (1996) Neural Computation , vol.8 , Issue.4 , pp. 819-842
    • Niyogi, P.1    Girosi, F.2
  • 14
    • 0001440803 scopus 로고
    • Tangent prop - A formalism for specifying selected invariances in an adaptive network
    • J. E. Moody, R. Hanson, & R. P. Lippmann (Eds.), San Mateo, CA: Morgan Kaufmann
    • Simard, P., Victorri, M., Le Cun, Y., & Denker, J. (1992). Tangent prop - a formalism for specifying selected invariances in an adaptive network. In J. E. Moody, R. Hanson, & R. P. Lippmann (Eds.), Advances in Neural Information Processing Systems 4 (pp. 895-903). San Mateo, CA: Morgan Kaufmann.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 895-903
    • Simard, P.1    Victorri, M.2    Le Cun, Y.3    Denker, J.4
  • 15
    • 0011889743 scopus 로고
    • Optimal control: A foundation for intelligent control
    • D. A. White & D. Sofge (Eds.), New York: Van Nostrand
    • White, D. A., & Jordan, M. I. (1992). Optimal control: A foundation for intelligent control. In D. A. White & D. Sofge (Eds.), Handbook of Intelligent Control (pp. 185-214). New York: Van Nostrand.
    • (1992) Handbook of Intelligent Control , pp. 185-214
    • White, D.A.1    Jordan, M.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.