-
1
-
-
0029484411
-
New neural network training algorithm and its applications
-
Baba, N., Mogami, Y., Shiraishi, Y., & Yamashita, Y. (1995). New neural network training algorithm and its applications. Journal of Artificial Neural Networks 2:37-54.
-
(1995)
Journal of Artificial Neural Networks
, vol.2
, pp. 37-54
-
-
Baba, N.1
Mogami, Y.2
Shiraishi, Y.3
Yamashita, Y.4
-
2
-
-
0026727494
-
Approximation of a function and its derivative with a neural network
-
Cardaliaguet, P., & Euvrard, G. (1992). Approximation of a function and its derivative with a neural network. Neural Networks 5:207-220.
-
(1992)
Neural Networks
, vol.5
, pp. 207-220
-
-
Cardaliaguet, P.1
Euvrard, G.2
-
3
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2:303-314.
-
(1989)
Math. Control Signals Syst.
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
4
-
-
0029182199
-
An accelerated learning algorithm for multilayer perceptrons: Optimization layer by layer
-
Ergezinger, S., & Thomsen, E. (1995). An accelerated learning algorithm for multilayer perceptrons: Optimization layer by layer. IEEE Trans. Neural Network 6(1):31-42.
-
(1995)
IEEE Trans. Neural Network
, vol.6
, Issue.1
, pp. 31-42
-
-
Ergezinger, S.1
Thomsen, E.2
-
5
-
-
0029375452
-
Learning and generalization in radial basis function
-
Freeman, J. A. S. & Saad, D. (1995). Learning and generalization in radial basis function, Neural Computation 7(8):1000-1020.
-
(1995)
Neural Computation
, vol.7
, Issue.8
, pp. 1000-1020
-
-
Freeman, J.A.S.1
Saad, D.2
-
6
-
-
0026449851
-
On learning the derivatives of an unknown mapping with multilayer feedforward networks
-
Gallant, A. R., & White, H. (1992). On learning the derivatives of an unknown mapping with multilayer feedforward networks. Neural Networks 5:129-138.
-
(1992)
Neural Networks
, vol.5
, pp. 129-138
-
-
Gallant, A.R.1
White, H.2
-
7
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks 2:359-399.
-
(1989)
Neural Networks
, vol.2
, pp. 359-399
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
8
-
-
0025627940
-
Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
-
Hornik, K., Stinchcombe, M., & White, H. (1990). Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks 3:551-560.
-
(1990)
Neural Networks
, vol.3
, pp. 551-560
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
9
-
-
0041939082
-
An input tracking control system and an input estimation system using a feedforward model on neural network
-
Iwata, M. & Kitamura, S. (1994). An input tracking control system and an input estimation system using a feedforward model on neural network (in Japanese). Transactions of the Society of Instrument and Control Engineers 30(3):303-309.
-
(1994)
Transactions of the Society of Instrument and Control Engineers
, vol.30
, Issue.3
, pp. 303-309
-
-
Iwata, M.1
Kitamura, S.2
-
10
-
-
0029271757
-
Fast neural learning and control of discrete-time nonlinear systems
-
Jin, L., Nikiforuk, P. N. & Gupta, M. (1995). Fast neural learning and control of discrete-time nonlinear systems. IEEE Trans. Systems, Man and Cybernetics 25(3):478-488.
-
(1995)
IEEE Trans. Systems, Man and Cybernetics
, vol.25
, Issue.3
, pp. 478-488
-
-
Jin, L.1
Nikiforuk, P.N.2
Gupta, M.3
-
11
-
-
44049116478
-
Forward models: Supervised learning with a distal teacher
-
Jordan, M. I., & Rumelhart, D. E. (1992). Forward models: Supervised learning with a distal teacher. Cognitive Science 16:307-354.
-
(1992)
Cognitive Science
, vol.16
, pp. 307-354
-
-
Jordan, M.I.1
Rumelhart, D.E.2
-
12
-
-
0000482137
-
On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions
-
Niyogi, P., & Girosi, F. (1996). On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions. Neural Computation 8(4):819-842.
-
(1996)
Neural Computation
, vol.8
, Issue.4
, pp. 819-842
-
-
Niyogi, P.1
Girosi, F.2
-
13
-
-
0000646059
-
Learning internal representations by error propagation
-
Cambridge, MA: MIT Press
-
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. Parallel Distributed Processing, Exploration in the Microstructure of Cognition. Cambridge, MA: MIT Press.
-
(1986)
Parallel Distributed Processing, Exploration in the Microstructure of Cognition
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
14
-
-
0001440803
-
Tangent prop - A formalism for specifying selected invariances in an adaptive network
-
J. E. Moody, R. Hanson, & R. P. Lippmann (Eds.), San Mateo, CA: Morgan Kaufmann
-
Simard, P., Victorri, M., Le Cun, Y., & Denker, J. (1992). Tangent prop - a formalism for specifying selected invariances in an adaptive network. In J. E. Moody, R. Hanson, & R. P. Lippmann (Eds.), Advances in Neural Information Processing Systems 4 (pp. 895-903). San Mateo, CA: Morgan Kaufmann.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 895-903
-
-
Simard, P.1
Victorri, M.2
Le Cun, Y.3
Denker, J.4
-
15
-
-
0011889743
-
Optimal control: A foundation for intelligent control
-
D. A. White & D. Sofge (Eds.), New York: Van Nostrand
-
White, D. A., & Jordan, M. I. (1992). Optimal control: A foundation for intelligent control. In D. A. White & D. Sofge (Eds.), Handbook of Intelligent Control (pp. 185-214). New York: Van Nostrand.
-
(1992)
Handbook of Intelligent Control
, pp. 185-214
-
-
White, D.A.1
Jordan, M.I.2
|