-
1
-
-
51249186242
-
On the least strongly compact cardinal
-
A. Apter, On the least strongly compact cardinal, Israel J. Math. 35 (1980) 225-233.
-
(1980)
Israel J. Math.
, vol.35
, pp. 225-233
-
-
Apter, A.1
-
2
-
-
0039118022
-
Measurability and degrees of strong compactness
-
A. Apter, Measurability and degrees of strong compactness, J. Symbolic Logic 46 (1981) 180-185.
-
(1981)
J. Symbolic Logic
, vol.46
, pp. 180-185
-
-
Apter, A.1
-
3
-
-
0037955423
-
On the first n strongly compact cardinals
-
A. Apter, On the first n strongly compact cardinals, Proc. Amer. Math. Soc. 123 (1995) 2229-2235.
-
(1995)
Proc. Amer. Math. Soc.
, vol.123
, pp. 2229-2235
-
-
Apter, A.1
-
4
-
-
0040749096
-
Laver indestructibility and the class of compact cardinals
-
to appear
-
A. Apter, Laver indestructibility and the class of compact cardinals, J. Symbolic Logic, to appear.
-
J. Symbolic Logic
-
-
Apter, A.1
-
5
-
-
0042321954
-
More on the least strongly compact cardinal
-
to appear
-
A. Apter, More on the least strongly compact cardinal, Math. Logic Quart., to appear.
-
Math. Logic Quart.
-
-
Apter, A.1
-
6
-
-
0041821055
-
The least measurable can be strongly compact and indestructible
-
to appear
-
A. Apter, M. Gitik, The least measurable can be strongly compact and indestructible, J. Symbolic Logic, to appear.
-
J. Symbolic Logic
-
-
Apter, A.1
Gitik, M.2
-
7
-
-
21444455339
-
On the strong equality between supercompactness and strong compactness
-
A. Apter, S. Shelah, On the strong equality between supercompactness and strong compactness, Trans. AMS 349 (1997) 103-128.
-
(1997)
Trans. AMS
, vol.349
, pp. 103-128
-
-
Apter, A.1
Shelah, S.2
-
8
-
-
0042823106
-
Menas' result is best possible
-
to appear
-
A. Apter, S. Shelah, Menas' result is best possible, Trans. AMS, to appear.
-
Trans. AMS
-
-
Apter, A.1
Shelah, S.2
-
9
-
-
35349000940
-
Forcing
-
J. Barwise (Ed.), North-Holland, Amsterdam
-
J. Burgess, Forcing, in: J. Barwise (Ed.), Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, pp. 403-452.
-
(1977)
Handbook of Mathematical Logic
, pp. 403-452
-
-
Burgess, J.1
-
13
-
-
0003353390
-
The evolution of large cardinal axioms in set theory
-
Springer, Berlin
-
A. Kanamori, M. Magidor, The evolution of large cardinal axioms in set theory, in: Lecture Notes in Mathematics, vol. 669, Springer, Berlin, 1978, pp. 99-275.
-
(1978)
Lecture Notes in Mathematics
, vol.669
, pp. 99-275
-
-
Kanamori, A.1
Magidor, M.2
-
15
-
-
51249180514
-
Making the supercompactness of K indestructible under K-directed closed forcing
-
R. Laver, Making the supercompactness of K indestructible under K-directed closed forcing, Israel J. Math. 29 (1978) 385-388.
-
(1978)
Israel J. Math.
, vol.29
, pp. 385-388
-
-
Laver, R.1
-
16
-
-
51249189487
-
Measurable cardinals and the continuum hypothesis
-
A. Lévy, R. Solovay, Measurable cardinals and the continuum hypothesis, Israel J. Math. 5 (1967) 234-248.
-
(1967)
Israel J. Math.
, vol.5
, pp. 234-248
-
-
Lévy, A.1
Solovay, R.2
-
17
-
-
51249191206
-
On the role of supercompact and extendible cardinals in logic
-
M. Magidor, On the role of supercompact and extendible cardinals in logic, Israel J. Math. 10 (1971) 147-157.
-
(1971)
Israel J. Math.
, vol.10
, pp. 147-157
-
-
Magidor, M.1
-
18
-
-
0002273754
-
How large is the first strongly compact cardinal?
-
M. Magidor, How large is the first strongly compact cardinal? Ann. of Math. Logic 10 (1976) 33-57.
-
(1976)
Ann. of Math. Logic
, vol.10
, pp. 33-57
-
-
Magidor, M.1
-
19
-
-
49549141110
-
On strong compactness and supercompactness
-
T. Menas, On strong compactness and supercompactness, Ann. of Math. Logic 7 (1975) 327-359.
-
(1975)
Ann. of Math. Logic
, vol.7
, pp. 327-359
-
-
Menas, T.1
|