-
1
-
-
84968473058
-
Proof of Poincaré's geometric theorem
-
G.D. Birkhoff, Proof of Poincaré's geometric theorem, Trans. Amer. Math. Soc. 14 (1913) 14-22, also in: Collected Mathematical Papers, Vol. 1, Dover, New York, 1968, pp. 673-681.
-
(1913)
Trans. Amer. Math. Soc.
, vol.14
, pp. 14-22
-
-
Birkhoff, G.D.1
-
2
-
-
84968473058
-
-
Dover, New York
-
G.D. Birkhoff, Proof of Poincaré's geometric theorem, Trans. Amer. Math. Soc. 14 (1913) 14-22, also in: Collected Mathematical Papers, Vol. 1, Dover, New York, 1968, pp. 673-681.
-
(1968)
Collected Mathematical Papers
, vol.1
, pp. 673-681
-
-
-
4
-
-
0002734536
-
Proof of the Poincaré-Birkhoff fixed point theorem
-
M. Brown, W.D. Neumann, Proof of the Poincaré-Birkhoff fixed point theorem, Michigan Math. J. 24 (1977) 21-31.
-
(1977)
Michigan Math. J.
, vol.24
, pp. 21-31
-
-
Brown, M.1
Neumann, W.D.2
-
6
-
-
38249011962
-
On the number of 2π periodic solutions for u″ + g(u) = s(1 + h(t)) using the Poincaré-Birkhoff theorem
-
M.A. Del Pino, R.F. Manásevich, A. Murua, On the number of 2π periodic solutions for u″ + g(u) = s(1 + h(t)) using the Poincaré-Birkhoff theorem, J. Differential Equations 95 (1992) 240-258.
-
(1992)
J. Differential Equations
, vol.95
, pp. 240-258
-
-
Del Pino, M.A.1
Manásevich, R.F.2
Murua, A.3
-
7
-
-
0001073501
-
The existence of transverse homoclinic points in the Sitnikov problem
-
H. Dankowicz, P. Holmes, The existence of transverse homoclinic points in the Sitnikov problem, J. Differential Equations 116 (1995) 468-483.
-
(1995)
J. Differential Equations
, vol.116
, pp. 468-483
-
-
Dankowicz, H.1
Holmes, P.2
-
8
-
-
38249006681
-
Subharmonic solutions of second order nonlinear equations: A time-map approach
-
T. Ding, F. Zanolin, Subharmonic solutions of second order nonlinear equations: a time-map approach, Nonlinear Anal. 20 (1993) 509-532.
-
(1993)
Nonlinear Anal.
, vol.20
, pp. 509-532
-
-
Ding, T.1
Zanolin, F.2
-
9
-
-
84966216880
-
A generalization of the Poincaré-Birkhoff theorem
-
W.Y. Ding, A generalization of the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc. 88 (1983) 341-346.
-
(1983)
Proc. Amer. Math. Soc.
, vol.88
, pp. 341-346
-
-
Ding, W.Y.1
-
11
-
-
0000954685
-
Generalizations of the Poincaré-Birkhoff theorem
-
J. Franks, Generalizations of the Poincaré-Birkhoff theorem, Ann. Math. 128 (1988) 139-151.
-
(1988)
Ann. Math.
, vol.128
, pp. 139-151
-
-
Franks, J.1
-
12
-
-
0034353694
-
Resonance pockets of Hill's equations with two-step potentials
-
S. Gan, M. Zhang, Resonance pockets of Hill's equations with two-step potentials, SIAM J. Math. Anal. 32 (2000) 651-664.
-
(2000)
SIAM J. Math. Anal.
, vol.32
, pp. 651-664
-
-
Gan, S.1
Zhang, M.2
-
15
-
-
0002448538
-
Periodic solutions of x″ + f(t, x) = 0 via the Poincaré-Birkhoff theorem
-
H. Jacobowitz, Periodic solutions of x″ + f(t, x)= 0 via the Poincaré-Birkhoff theorem, J. Differential Equations 20 (1976) 37-52.
-
(1976)
J. Differential Equations
, vol.20
, pp. 37-52
-
-
Jacobowitz, H.1
-
16
-
-
0000423029
-
The rotation number for almost periodic potentials
-
R. Johnson, J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys. 84 (1982) 403-438.
-
(1982)
Comm. Math. Phys.
, vol.84
, pp. 403-438
-
-
Johnson, R.1
Moser, J.2
-
17
-
-
85031179388
-
Maslov index, Poincaré-Birkhoff theorem and periodic solutions of asymptotically linear planar Hamiltonian systems
-
to appear
-
A. Margheri, C. Rebelo, F. Zanolin, Maslov index, Poincaré-Birkhoff theorem and periodic solutions of asymptotically linear planar Hamiltonian systems, J. Differential Equations, to appear.
-
J. Differential Equations
-
-
Margheri, A.1
Rebelo, C.2
Zanolin, F.3
-
18
-
-
0003588811
-
-
Princeton Univ. Press, Princeton, NJ
-
J. Moser, Stable and Random Motions in Dynamical Systems, with Special Emphasis on Celestial Mechanics, Princeton Univ. Press, Princeton, NJ, 1973.
-
(1973)
Stable and Random Motions in Dynamical Systems, with Special Emphasis on Celestial Mechanics
-
-
Moser, J.1
-
20
-
-
65749319455
-
Sur un théorème de géométrie
-
M.H. Poincaré, Sur un théorème de géométrie, Rend. Circ. Mat. Palermo 33 (1912) 375-407.
-
(1912)
Rend. Circ. Mat. Palermo
, vol.33
, pp. 375-407
-
-
Poincaré, M.H.1
-
21
-
-
0031209701
-
A note on thé Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems
-
C. Rebelo, A note on thé Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems, Nonlinear Anal. 29 (1997) 291-311.
-
(1997)
Nonlinear Anal.
, vol.29
, pp. 291-311
-
-
Rebelo, C.1
-
23
-
-
0000785077
-
Continuation theorems for the periodic problem via the translation operator
-
F. Zanolin, Continuation theorems for the periodic problem via the translation operator, Rend. Sem. Mat. Univ. Politec. Torino 54 (1996) 1-23.
-
(1996)
Rend. Sem. Mat. Univ. Politec. Torino
, vol.54
, pp. 1-23
-
-
Zanolin, F.1
-
24
-
-
0011221382
-
Nonuniform nonresonance of semilinear differential equations
-
M. Zhang, Nonuniform nonresonance of semilinear differential equations, J. Differential Equations 166 (2000) 33-50.
-
(2000)
J. Differential Equations
, vol.166
, pp. 33-50
-
-
Zhang, M.1
-
25
-
-
0001289835
-
The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials
-
M. Zhang, The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials, J. London Math. Soc. 64 (2001) 125-143.
-
(2001)
J. London Math. Soc.
, vol.64
, pp. 125-143
-
-
Zhang, M.1
|