메뉴 건너뛰기




Volumn 279, Issue 1, 2003, Pages 290-307

Rotation numbers, eigenvalues, and the Poincaré-Birkhoff theorem

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0038673074     PISSN: 0022247X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0022-247X(03)00012-X     Document Type: Article
Times cited : (33)

References (25)
  • 1
    • 84968473058 scopus 로고
    • Proof of Poincaré's geometric theorem
    • G.D. Birkhoff, Proof of Poincaré's geometric theorem, Trans. Amer. Math. Soc. 14 (1913) 14-22, also in: Collected Mathematical Papers, Vol. 1, Dover, New York, 1968, pp. 673-681.
    • (1913) Trans. Amer. Math. Soc. , vol.14 , pp. 14-22
    • Birkhoff, G.D.1
  • 2
    • 84968473058 scopus 로고
    • Dover, New York
    • G.D. Birkhoff, Proof of Poincaré's geometric theorem, Trans. Amer. Math. Soc. 14 (1913) 14-22, also in: Collected Mathematical Papers, Vol. 1, Dover, New York, 1968, pp. 673-681.
    • (1968) Collected Mathematical Papers , vol.1 , pp. 673-681
  • 4
    • 0002734536 scopus 로고
    • Proof of the Poincaré-Birkhoff fixed point theorem
    • M. Brown, W.D. Neumann, Proof of the Poincaré-Birkhoff fixed point theorem, Michigan Math. J. 24 (1977) 21-31.
    • (1977) Michigan Math. J. , vol.24 , pp. 21-31
    • Brown, M.1    Neumann, W.D.2
  • 6
    • 38249011962 scopus 로고
    • On the number of 2π periodic solutions for u″ + g(u) = s(1 + h(t)) using the Poincaré-Birkhoff theorem
    • M.A. Del Pino, R.F. Manásevich, A. Murua, On the number of 2π periodic solutions for u″ + g(u) = s(1 + h(t)) using the Poincaré-Birkhoff theorem, J. Differential Equations 95 (1992) 240-258.
    • (1992) J. Differential Equations , vol.95 , pp. 240-258
    • Del Pino, M.A.1    Manásevich, R.F.2    Murua, A.3
  • 7
    • 0001073501 scopus 로고
    • The existence of transverse homoclinic points in the Sitnikov problem
    • H. Dankowicz, P. Holmes, The existence of transverse homoclinic points in the Sitnikov problem, J. Differential Equations 116 (1995) 468-483.
    • (1995) J. Differential Equations , vol.116 , pp. 468-483
    • Dankowicz, H.1    Holmes, P.2
  • 8
    • 38249006681 scopus 로고
    • Subharmonic solutions of second order nonlinear equations: A time-map approach
    • T. Ding, F. Zanolin, Subharmonic solutions of second order nonlinear equations: a time-map approach, Nonlinear Anal. 20 (1993) 509-532.
    • (1993) Nonlinear Anal. , vol.20 , pp. 509-532
    • Ding, T.1    Zanolin, F.2
  • 9
    • 84966216880 scopus 로고
    • A generalization of the Poincaré-Birkhoff theorem
    • W.Y. Ding, A generalization of the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc. 88 (1983) 341-346.
    • (1983) Proc. Amer. Math. Soc. , vol.88 , pp. 341-346
    • Ding, W.Y.1
  • 11
    • 0000954685 scopus 로고
    • Generalizations of the Poincaré-Birkhoff theorem
    • J. Franks, Generalizations of the Poincaré-Birkhoff theorem, Ann. Math. 128 (1988) 139-151.
    • (1988) Ann. Math. , vol.128 , pp. 139-151
    • Franks, J.1
  • 12
    • 0034353694 scopus 로고    scopus 로고
    • Resonance pockets of Hill's equations with two-step potentials
    • S. Gan, M. Zhang, Resonance pockets of Hill's equations with two-step potentials, SIAM J. Math. Anal. 32 (2000) 651-664.
    • (2000) SIAM J. Math. Anal. , vol.32 , pp. 651-664
    • Gan, S.1    Zhang, M.2
  • 15
    • 0002448538 scopus 로고
    • Periodic solutions of x″ + f(t, x) = 0 via the Poincaré-Birkhoff theorem
    • H. Jacobowitz, Periodic solutions of x″ + f(t, x)= 0 via the Poincaré-Birkhoff theorem, J. Differential Equations 20 (1976) 37-52.
    • (1976) J. Differential Equations , vol.20 , pp. 37-52
    • Jacobowitz, H.1
  • 16
    • 0000423029 scopus 로고
    • The rotation number for almost periodic potentials
    • R. Johnson, J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys. 84 (1982) 403-438.
    • (1982) Comm. Math. Phys. , vol.84 , pp. 403-438
    • Johnson, R.1    Moser, J.2
  • 17
    • 85031179388 scopus 로고    scopus 로고
    • Maslov index, Poincaré-Birkhoff theorem and periodic solutions of asymptotically linear planar Hamiltonian systems
    • to appear
    • A. Margheri, C. Rebelo, F. Zanolin, Maslov index, Poincaré-Birkhoff theorem and periodic solutions of asymptotically linear planar Hamiltonian systems, J. Differential Equations, to appear.
    • J. Differential Equations
    • Margheri, A.1    Rebelo, C.2    Zanolin, F.3
  • 20
    • 65749319455 scopus 로고
    • Sur un théorème de géométrie
    • M.H. Poincaré, Sur un théorème de géométrie, Rend. Circ. Mat. Palermo 33 (1912) 375-407.
    • (1912) Rend. Circ. Mat. Palermo , vol.33 , pp. 375-407
    • Poincaré, M.H.1
  • 21
    • 0031209701 scopus 로고    scopus 로고
    • A note on thé Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems
    • C. Rebelo, A note on thé Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems, Nonlinear Anal. 29 (1997) 291-311.
    • (1997) Nonlinear Anal. , vol.29 , pp. 291-311
    • Rebelo, C.1
  • 23
    • 0000785077 scopus 로고    scopus 로고
    • Continuation theorems for the periodic problem via the translation operator
    • F. Zanolin, Continuation theorems for the periodic problem via the translation operator, Rend. Sem. Mat. Univ. Politec. Torino 54 (1996) 1-23.
    • (1996) Rend. Sem. Mat. Univ. Politec. Torino , vol.54 , pp. 1-23
    • Zanolin, F.1
  • 24
    • 0011221382 scopus 로고    scopus 로고
    • Nonuniform nonresonance of semilinear differential equations
    • M. Zhang, Nonuniform nonresonance of semilinear differential equations, J. Differential Equations 166 (2000) 33-50.
    • (2000) J. Differential Equations , vol.166 , pp. 33-50
    • Zhang, M.1
  • 25
    • 0001289835 scopus 로고    scopus 로고
    • The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials
    • M. Zhang, The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials, J. London Math. Soc. 64 (2001) 125-143.
    • (2001) J. London Math. Soc. , vol.64 , pp. 125-143
    • Zhang, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.