메뉴 건너뛰기




Volumn 29, Issue 3, 1997, Pages 291-311

A note on the Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems

Author keywords

Periodic solutions of planar systems; Poincar Birkhoff fixed point theorem

Indexed keywords

DIFFERENTIAL EQUATIONS; FUNCTIONS; LAGRANGE MULTIPLIERS; PROBLEM SOLVING;

EID: 0031209701     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0362-546X(96)00065-X     Document Type: Article
Times cited : (62)

References (37)
  • 1
    • 65749319455 scopus 로고
    • Sur un théorème de geométrie
    • POINCARÉ, H., Sur un théorème de geométrie. Rend. Circ. Mat. Palermo. 1912, 33, 375-407.
    • (1912) Rend. Circ. Mat. Palermo. , vol.33 , pp. 375-407
    • Poincaré, H.1
  • 2
    • 84966258345 scopus 로고
    • George David Birkhoff and his mathematical work
    • MORSE, M., George David Birkhoff and his mathematical work. Bull. Am. Math. Soc., 1946, 52, 357-391.
    • (1946) Bull. Am. Math. Soc. , vol.52 , pp. 357-391
    • Morse, M.1
  • 3
    • 84968473058 scopus 로고
    • Proof of Poincaré's geometric theorem
    • BIRKHOFF, G. D., Proof of Poincaré's geometric theorem. Trans. Am. Math. Soc., 1913, 14, 14-22 (Collected Mathematical Papers, Vol. 1, pp. 673-681. Dover, New York, 1968).
    • (1913) Trans. Am. Math. Soc. , vol.14 , pp. 14-22
    • Birkhoff, G.D.1
  • 4
    • 84968473058 scopus 로고
    • Dover, New York
    • BIRKHOFF, G. D., Proof of Poincaré's geometric theorem. Trans. Am. Math. Soc., 1913, 14, 14-22 (Collected Mathematical Papers, Vol. 1, pp. 673-681. Dover, New York, 1968).
    • (1968) Collected Mathematical Papers , vol.1 , pp. 673-681
  • 5
    • 0000024406 scopus 로고
    • Dynamical systems with two degrees of freedom
    • BIRKHOFF, G. D., Dynamical systems with two degrees of freedom. Trans. Am. Math. Soc., 1917, 18, 199-300 (Collected Mathematical Papers, Vol. 2, pp. 1-102. Dover, New York, 1968).
    • (1917) Trans. Am. Math. Soc. , vol.18 , pp. 199-300
    • Birkhoff, G.D.1
  • 6
    • 0000024406 scopus 로고
    • Dover, New York
    • BIRKHOFF, G. D., Dynamical systems with two degrees of freedom. Trans. Am. Math. Soc., 1917, 18, 199-300 (Collected Mathematical Papers, Vol. 2, pp. 1-102. Dover, New York, 1968).
    • (1968) Collected Mathematical Papers , vol.2 , pp. 1-102
  • 7
    • 51249195279 scopus 로고
    • An extension of Poincaré's last geometric theorem
    • BIRKHOFF, G. D., An extension of Poincaré's last geometric theorem. Acta Math., 1925, 47, 297-311 (Collected Mathematical Papers, Vol. 2, pp. 252-266. Dover, New York, 1968).
    • (1925) Acta Math. , vol.47 , pp. 297-311
    • Birkhoff, G.D.1
  • 8
    • 51249195279 scopus 로고
    • Dover, New York
    • BIRKHOFF, G. D., An extension of Poincaré's last geometric theorem. Acta Math., 1925, 47, 297-311 (Collected Mathematical Papers, Vol. 2, pp. 252-266. Dover, New York, 1968).
    • (1968) Collected Mathematical Papers , vol.2 , pp. 252-266
  • 9
    • 84968500697 scopus 로고
    • An improvement of the Poincaré-Birkhoff fixed point theorem
    • CARTER, P., An improvement of the Poincaré-Birkhoff fixed point theorem. Trans. Am. Math. Soc., 1982, 269, 285-299.
    • (1982) Trans. Am. Math. Soc. , vol.269 , pp. 285-299
    • Carter, P.1
  • 10
    • 43949150994 scopus 로고
    • Théorème de translation plane de Brouwer et génèralisations du théorème de Poincaré-Birkhoff
    • GUILLOU, L., Théorème de translation plane de Brouwer et génèralisations du théorème de Poincaré-Birkhoff. Topology, 1994, 33, 333-351.
    • (1994) Topology , vol.33 , pp. 333-351
    • Guillou, L.1
  • 11
    • 0002734536 scopus 로고
    • Proof of the Poincaré-Birkhoff fixed point theorem
    • BROWN, M. & NEUMANN, W. D., Proof of the Poincaré-Birkhoff fixed point theorem. Michigan Math. J., 1977, 24, 21-31.
    • (1977) Michigan Math. J. , vol.24 , pp. 21-31
    • Brown, M.1    Neumann, W.D.2
  • 12
    • 0002448538 scopus 로고
    • Periodic solutions of x″ + f (t, x) = 0 via the Poincaré-Birkhoff theorem
    • JACOBOWITZ, H., Periodic solutions of x″ + f (t, x) = 0 via the Poincaré-Birkhoff theorem. J. Diff. Eqns, 1976, 20, 37-52; Corrigendum, the existence of the second fixed point: a correction to "Periodic solutions of x″ + f (t, x) = 0 via the Poincaré-Birkhoff theorem". J. Diff. Eqns, 1977, 25, 148-149.
    • (1976) J. Diff. Eqns , vol.20 , pp. 37-52
    • Jacobowitz, H.1
  • 13
    • 0043018224 scopus 로고
    • Corrigendum, the existence of the second fixed point: A correction to "Periodic solutions of x″ + f (t, x) = 0 via the Poincaré-Birkhoff theorem"
    • JACOBOWITZ, H., Periodic solutions of x″ + f (t, x) = 0 via the Poincaré-Birkhoff theorem. J. Diff. Eqns, 1976, 20, 37-52; Corrigendum, the existence of the second fixed point: a correction to "Periodic solutions of x″ + f (t, x) = 0 via the Poincaré-Birkhoff theorem". J. Diff. Eqns, 1977, 25, 148-149.
    • (1977) J. Diff. Eqns , vol.25 , pp. 148-149
  • 14
    • 0009250315 scopus 로고
    • Une généralisation à n dimensions du dernier théorème de géometrie de Poincaré
    • BIRKHOFF, G. D., Une généralisation à n dimensions du dernier théorème de géometrie de Poincaré. Comptes rendus des séances de l'Académie des Sciences, 1931, 192, 196-198.
    • (1931) Comptes Rendus des Séances de l'Académie des Sciences , vol.192 , pp. 196-198
    • Birkhoff, G.D.1
  • 15
    • 0002246294 scopus 로고
    • On boundary value problems for superlinear second order differential equations
    • HARTMAN, P., On boundary value problems for superlinear second order differential equations. J. Diff. Eqns, 1977, 26, 37-53.
    • (1977) J. Diff. Eqns , vol.26 , pp. 37-53
    • Hartman, P.1
  • 16
    • 0004223966 scopus 로고
    • Dynamical systems
    • Colloquium Publ. New York
    • BIRKHOFF, G. D., Dynamical systems. Am. Math. Soc., Colloquium Publ. Vol. IX, New York, 1927.
    • (1927) Am. Math. Soc. , vol.9
    • Birkhoff, G.D.1
  • 17
    • 0043018222 scopus 로고
    • The Poincaré-Birkhoff "twist" theorem and periodic solutions of second-order nonlinear differential equations
    • Stillwater, OK, 1979, ed. S. Ahmad, M. Keener and A. C. Lazer. Academic Press, New York
    • BUTLER, G. J., The Poincaré-Birkhoff "twist" theorem and periodic solutions of second-order nonlinear differential equations. In Proceedings of the 8th Fall Conference on Differential Equations, Stillwater, OK, 1979, ed. S. Ahmad, M. Keener and A. C. Lazer. Academic Press, New York, 1980, pp. 135-147.
    • (1980) Proceedings of the 8th Fall Conference on Differential Equations , pp. 135-147
    • Butler, G.J.1
  • 18
    • 21844515478 scopus 로고
    • Oscillatory properties of solutions and nonlinear differential equations with periodic boundary conditions
    • MAWHIN, J., Oscillatory properties of solutions and nonlinear differential equations with periodic boundary conditions. Rocky Mountain J. Math., 1995, 25, 7-37.
    • (1995) Rocky Mountain J. Math. , vol.25 , pp. 7-37
    • Mawhin, J.1
  • 19
    • 84966216880 scopus 로고
    • A generalization of the Poincaré-Birkhoff theorem
    • DING, W.-Y., A generalization of the Poincaré-Birkhoff theorem. Proc. Am. Math. Soc., 1983, 88, 341-346.
    • (1983) Proc. Am. Math. Soc. , vol.88 , pp. 341-346
    • Ding, W.-Y.1
  • 20
    • 0000954685 scopus 로고
    • Generalizations of the Poincaré-Birkhoff theorem
    • FRANKS, J., Generalizations of the Poincaré-Birkhoff theorem. Ann. Math., 1988, 128, 139-151.
    • (1988) Ann. Math. , vol.128 , pp. 139-151
    • Franks, J.1
  • 21
    • 38249011962 scopus 로고
    • On the number of 2π periodic solutions for u″ + g(u) = s(1 + h(t)) using the Poincaré-Birkhoff theorem
    • DEL PINO, M., MANÁSEVICH, R. & MURUA, A., On the number of 2π periodic solutions for u″ + g(u) = s(1 + h(t)) using the Poincaré-Birkhoff theorem. J. Diff. Eqns, 1992, 95, 240-258.
    • (1992) J. Diff. Eqns , vol.95 , pp. 240-258
    • Del Pino, M.1    Manásevich, R.2    Murua, A.3
  • 22
    • 84966205375 scopus 로고
    • An infinite class of periodic solutions of periodically perturbed Duffing equations at resonance
    • DING, T., An infinite class of periodic solutions of periodically perturbed Duffing equations at resonance. Proc. Am. Math. Soc., 1982, 86, 47-54.
    • (1982) Proc. Am. Math. Soc. , vol.86 , pp. 47-54
    • Ding, T.1
  • 23
    • 38249012758 scopus 로고
    • Periodic solutions of Duffing's equations with superquadratic potential
    • DING, T. & ZANOLIN, F., Periodic solutions of Duffing's equations with superquadratic potential. J. Diff. Eqns, 1992, 97, 328-378.
    • (1992) J. Diff. Eqns , vol.97 , pp. 328-378
    • Ding, T.1    Zanolin, F.2
  • 24
    • 0000759436 scopus 로고
    • Fixed points of twist mappings and periodic solutions of ordinary differential equations
    • Chinese
    • DING, W.-Y., Fixed points of twist mappings and periodic solutions of ordinary differential equations. Acta Math. Sin., 1982, 25, 227-235 (Chinese).
    • (1982) Acta Math. Sin. , vol.25 , pp. 227-235
    • Ding, W.-Y.1
  • 29
    • 0001417119 scopus 로고
    • Measure preserving homeomorphisms and metrical transitivity
    • OXTOBY, J. & ULAM, S., Measure preserving homeomorphisms and metrical transitivity. Ann. Math., 1941, 42, 874-920.
    • (1941) Ann. Math. , vol.42 , pp. 874-920
    • Oxtoby, J.1    Ulam, S.2
  • 30
    • 84971110205 scopus 로고
    • Generalizations of the Poincaré Birkhoff fixed point theorem
    • NEUMANN, W. D., Generalizations of the Poincaré Birkhoff fixed point theorem. Bull. Austral. Math. Soc., 1977, 17, 375-389.
    • (1977) Bull. Austral. Math. Soc. , vol.17 , pp. 375-389
    • Neumann, W.D.1
  • 32
    • 38249006681 scopus 로고
    • Subharmonic solutions of second order nonlinear equations: A time-map approach
    • DING, T. & ZANOLIN, F., Subharmonic solutions of second order nonlinear equations: a time-map approach. Nonlinear Analysis, 1993, 20, 509-532.
    • (1993) Nonlinear Analysis , vol.20 , pp. 509-532
    • Ding, T.1    Zanolin, F.2
  • 34
    • 0009429270 scopus 로고    scopus 로고
    • Periodic solutions and subharmonic solutions for a class of planar systems of Lotka-Volterra type
    • Tampa, 1992, ed. V. Lakshmikantham. de Gruyter, Berlin
    • DING, T. & ZANOLIN, F., Periodic solutions and subharmonic solutions for a class of planar systems of Lotka-Volterra type. In Proc. of the 1st World Congress of Nonlinear Analysts, Tampa, 1992, ed. V. Lakshmikantham. de Gruyter, Berlin, 1996, pp. 395-406.
    • (1996) Proc. of the 1st World Congress of Nonlinear Analysts , pp. 395-406
    • Ding, T.1    Zanolin, F.2
  • 35
    • 21344470830 scopus 로고    scopus 로고
    • Multiplicity results for periodic solutions of second order ODEs with asymmetric nonlinearities
    • REBELO, C. & ZANOLIN, F., Multiplicity results for periodic solutions of second order ODEs with asymmetric nonlinearities. Trans. Am. Math. Soc., 1996, 348, 2349-2389.
    • (1996) Trans. Am. Math. Soc. , vol.348 , pp. 2349-2389
    • Rebelo, C.1    Zanolin, F.2
  • 36
    • 0028483136 scopus 로고
    • Subharmonic hysteresis and periodic doubling bifurcations for a periodically driven laser
    • SCHWARTZ, I. B. & ERNEUX, T., Subharmonic hysteresis and periodic doubling bifurcations for a periodically driven laser. SIAM J. Appl. Math., 1994, 54, 1083-1100.
    • (1994) SIAM J. Appl. Math. , vol.54 , pp. 1083-1100
    • Schwartz, I.B.1    Erneux, T.2
  • 37
    • 0001088475 scopus 로고
    • Large-amplitude subharmonic oscillations for scalar second-order differential equations with asymmetric nonlinearities
    • FONDA, A. & RAMOS, M., Large-amplitude subharmonic oscillations for scalar second-order differential equations with asymmetric nonlinearities. J. Diff. Eqns, 1994, 109, 354-372.
    • (1994) J. Diff. Eqns , vol.109 , pp. 354-372
    • Fonda, A.1    Ramos, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.