-
1
-
-
65749319455
-
Sur un théorème de geométrie
-
POINCARÉ, H., Sur un théorème de geométrie. Rend. Circ. Mat. Palermo. 1912, 33, 375-407.
-
(1912)
Rend. Circ. Mat. Palermo.
, vol.33
, pp. 375-407
-
-
Poincaré, H.1
-
2
-
-
84966258345
-
George David Birkhoff and his mathematical work
-
MORSE, M., George David Birkhoff and his mathematical work. Bull. Am. Math. Soc., 1946, 52, 357-391.
-
(1946)
Bull. Am. Math. Soc.
, vol.52
, pp. 357-391
-
-
Morse, M.1
-
3
-
-
84968473058
-
Proof of Poincaré's geometric theorem
-
BIRKHOFF, G. D., Proof of Poincaré's geometric theorem. Trans. Am. Math. Soc., 1913, 14, 14-22 (Collected Mathematical Papers, Vol. 1, pp. 673-681. Dover, New York, 1968).
-
(1913)
Trans. Am. Math. Soc.
, vol.14
, pp. 14-22
-
-
Birkhoff, G.D.1
-
4
-
-
84968473058
-
-
Dover, New York
-
BIRKHOFF, G. D., Proof of Poincaré's geometric theorem. Trans. Am. Math. Soc., 1913, 14, 14-22 (Collected Mathematical Papers, Vol. 1, pp. 673-681. Dover, New York, 1968).
-
(1968)
Collected Mathematical Papers
, vol.1
, pp. 673-681
-
-
-
5
-
-
0000024406
-
Dynamical systems with two degrees of freedom
-
BIRKHOFF, G. D., Dynamical systems with two degrees of freedom. Trans. Am. Math. Soc., 1917, 18, 199-300 (Collected Mathematical Papers, Vol. 2, pp. 1-102. Dover, New York, 1968).
-
(1917)
Trans. Am. Math. Soc.
, vol.18
, pp. 199-300
-
-
Birkhoff, G.D.1
-
6
-
-
0000024406
-
-
Dover, New York
-
BIRKHOFF, G. D., Dynamical systems with two degrees of freedom. Trans. Am. Math. Soc., 1917, 18, 199-300 (Collected Mathematical Papers, Vol. 2, pp. 1-102. Dover, New York, 1968).
-
(1968)
Collected Mathematical Papers
, vol.2
, pp. 1-102
-
-
-
7
-
-
51249195279
-
An extension of Poincaré's last geometric theorem
-
BIRKHOFF, G. D., An extension of Poincaré's last geometric theorem. Acta Math., 1925, 47, 297-311 (Collected Mathematical Papers, Vol. 2, pp. 252-266. Dover, New York, 1968).
-
(1925)
Acta Math.
, vol.47
, pp. 297-311
-
-
Birkhoff, G.D.1
-
8
-
-
51249195279
-
-
Dover, New York
-
BIRKHOFF, G. D., An extension of Poincaré's last geometric theorem. Acta Math., 1925, 47, 297-311 (Collected Mathematical Papers, Vol. 2, pp. 252-266. Dover, New York, 1968).
-
(1968)
Collected Mathematical Papers
, vol.2
, pp. 252-266
-
-
-
9
-
-
84968500697
-
An improvement of the Poincaré-Birkhoff fixed point theorem
-
CARTER, P., An improvement of the Poincaré-Birkhoff fixed point theorem. Trans. Am. Math. Soc., 1982, 269, 285-299.
-
(1982)
Trans. Am. Math. Soc.
, vol.269
, pp. 285-299
-
-
Carter, P.1
-
10
-
-
43949150994
-
Théorème de translation plane de Brouwer et génèralisations du théorème de Poincaré-Birkhoff
-
GUILLOU, L., Théorème de translation plane de Brouwer et génèralisations du théorème de Poincaré-Birkhoff. Topology, 1994, 33, 333-351.
-
(1994)
Topology
, vol.33
, pp. 333-351
-
-
Guillou, L.1
-
11
-
-
0002734536
-
Proof of the Poincaré-Birkhoff fixed point theorem
-
BROWN, M. & NEUMANN, W. D., Proof of the Poincaré-Birkhoff fixed point theorem. Michigan Math. J., 1977, 24, 21-31.
-
(1977)
Michigan Math. J.
, vol.24
, pp. 21-31
-
-
Brown, M.1
Neumann, W.D.2
-
12
-
-
0002448538
-
Periodic solutions of x″ + f (t, x) = 0 via the Poincaré-Birkhoff theorem
-
JACOBOWITZ, H., Periodic solutions of x″ + f (t, x) = 0 via the Poincaré-Birkhoff theorem. J. Diff. Eqns, 1976, 20, 37-52; Corrigendum, the existence of the second fixed point: a correction to "Periodic solutions of x″ + f (t, x) = 0 via the Poincaré-Birkhoff theorem". J. Diff. Eqns, 1977, 25, 148-149.
-
(1976)
J. Diff. Eqns
, vol.20
, pp. 37-52
-
-
Jacobowitz, H.1
-
13
-
-
0043018224
-
Corrigendum, the existence of the second fixed point: A correction to "Periodic solutions of x″ + f (t, x) = 0 via the Poincaré-Birkhoff theorem"
-
JACOBOWITZ, H., Periodic solutions of x″ + f (t, x) = 0 via the Poincaré-Birkhoff theorem. J. Diff. Eqns, 1976, 20, 37-52; Corrigendum, the existence of the second fixed point: a correction to "Periodic solutions of x″ + f (t, x) = 0 via the Poincaré-Birkhoff theorem". J. Diff. Eqns, 1977, 25, 148-149.
-
(1977)
J. Diff. Eqns
, vol.25
, pp. 148-149
-
-
-
14
-
-
0009250315
-
Une généralisation à n dimensions du dernier théorème de géometrie de Poincaré
-
BIRKHOFF, G. D., Une généralisation à n dimensions du dernier théorème de géometrie de Poincaré. Comptes rendus des séances de l'Académie des Sciences, 1931, 192, 196-198.
-
(1931)
Comptes Rendus des Séances de l'Académie des Sciences
, vol.192
, pp. 196-198
-
-
Birkhoff, G.D.1
-
15
-
-
0002246294
-
On boundary value problems for superlinear second order differential equations
-
HARTMAN, P., On boundary value problems for superlinear second order differential equations. J. Diff. Eqns, 1977, 26, 37-53.
-
(1977)
J. Diff. Eqns
, vol.26
, pp. 37-53
-
-
Hartman, P.1
-
16
-
-
0004223966
-
Dynamical systems
-
Colloquium Publ. New York
-
BIRKHOFF, G. D., Dynamical systems. Am. Math. Soc., Colloquium Publ. Vol. IX, New York, 1927.
-
(1927)
Am. Math. Soc.
, vol.9
-
-
Birkhoff, G.D.1
-
17
-
-
0043018222
-
The Poincaré-Birkhoff "twist" theorem and periodic solutions of second-order nonlinear differential equations
-
Stillwater, OK, 1979, ed. S. Ahmad, M. Keener and A. C. Lazer. Academic Press, New York
-
BUTLER, G. J., The Poincaré-Birkhoff "twist" theorem and periodic solutions of second-order nonlinear differential equations. In Proceedings of the 8th Fall Conference on Differential Equations, Stillwater, OK, 1979, ed. S. Ahmad, M. Keener and A. C. Lazer. Academic Press, New York, 1980, pp. 135-147.
-
(1980)
Proceedings of the 8th Fall Conference on Differential Equations
, pp. 135-147
-
-
Butler, G.J.1
-
18
-
-
21844515478
-
Oscillatory properties of solutions and nonlinear differential equations with periodic boundary conditions
-
MAWHIN, J., Oscillatory properties of solutions and nonlinear differential equations with periodic boundary conditions. Rocky Mountain J. Math., 1995, 25, 7-37.
-
(1995)
Rocky Mountain J. Math.
, vol.25
, pp. 7-37
-
-
Mawhin, J.1
-
19
-
-
84966216880
-
A generalization of the Poincaré-Birkhoff theorem
-
DING, W.-Y., A generalization of the Poincaré-Birkhoff theorem. Proc. Am. Math. Soc., 1983, 88, 341-346.
-
(1983)
Proc. Am. Math. Soc.
, vol.88
, pp. 341-346
-
-
Ding, W.-Y.1
-
20
-
-
0000954685
-
Generalizations of the Poincaré-Birkhoff theorem
-
FRANKS, J., Generalizations of the Poincaré-Birkhoff theorem. Ann. Math., 1988, 128, 139-151.
-
(1988)
Ann. Math.
, vol.128
, pp. 139-151
-
-
Franks, J.1
-
21
-
-
38249011962
-
On the number of 2π periodic solutions for u″ + g(u) = s(1 + h(t)) using the Poincaré-Birkhoff theorem
-
DEL PINO, M., MANÁSEVICH, R. & MURUA, A., On the number of 2π periodic solutions for u″ + g(u) = s(1 + h(t)) using the Poincaré-Birkhoff theorem. J. Diff. Eqns, 1992, 95, 240-258.
-
(1992)
J. Diff. Eqns
, vol.95
, pp. 240-258
-
-
Del Pino, M.1
Manásevich, R.2
Murua, A.3
-
22
-
-
84966205375
-
An infinite class of periodic solutions of periodically perturbed Duffing equations at resonance
-
DING, T., An infinite class of periodic solutions of periodically perturbed Duffing equations at resonance. Proc. Am. Math. Soc., 1982, 86, 47-54.
-
(1982)
Proc. Am. Math. Soc.
, vol.86
, pp. 47-54
-
-
Ding, T.1
-
23
-
-
38249012758
-
Periodic solutions of Duffing's equations with superquadratic potential
-
DING, T. & ZANOLIN, F., Periodic solutions of Duffing's equations with superquadratic potential. J. Diff. Eqns, 1992, 97, 328-378.
-
(1992)
J. Diff. Eqns
, vol.97
, pp. 328-378
-
-
Ding, T.1
Zanolin, F.2
-
24
-
-
0000759436
-
Fixed points of twist mappings and periodic solutions of ordinary differential equations
-
Chinese
-
DING, W.-Y., Fixed points of twist mappings and periodic solutions of ordinary differential equations. Acta Math. Sin., 1982, 25, 227-235 (Chinese).
-
(1982)
Acta Math. Sin.
, vol.25
, pp. 227-235
-
-
Ding, W.-Y.1
-
29
-
-
0001417119
-
Measure preserving homeomorphisms and metrical transitivity
-
OXTOBY, J. & ULAM, S., Measure preserving homeomorphisms and metrical transitivity. Ann. Math., 1941, 42, 874-920.
-
(1941)
Ann. Math.
, vol.42
, pp. 874-920
-
-
Oxtoby, J.1
Ulam, S.2
-
30
-
-
84971110205
-
Generalizations of the Poincaré Birkhoff fixed point theorem
-
NEUMANN, W. D., Generalizations of the Poincaré Birkhoff fixed point theorem. Bull. Austral. Math. Soc., 1977, 17, 375-389.
-
(1977)
Bull. Austral. Math. Soc.
, vol.17
, pp. 375-389
-
-
Neumann, W.D.1
-
32
-
-
38249006681
-
Subharmonic solutions of second order nonlinear equations: A time-map approach
-
DING, T. & ZANOLIN, F., Subharmonic solutions of second order nonlinear equations: a time-map approach. Nonlinear Analysis, 1993, 20, 509-532.
-
(1993)
Nonlinear Analysis
, vol.20
, pp. 509-532
-
-
Ding, T.1
Zanolin, F.2
-
34
-
-
0009429270
-
Periodic solutions and subharmonic solutions for a class of planar systems of Lotka-Volterra type
-
Tampa, 1992, ed. V. Lakshmikantham. de Gruyter, Berlin
-
DING, T. & ZANOLIN, F., Periodic solutions and subharmonic solutions for a class of planar systems of Lotka-Volterra type. In Proc. of the 1st World Congress of Nonlinear Analysts, Tampa, 1992, ed. V. Lakshmikantham. de Gruyter, Berlin, 1996, pp. 395-406.
-
(1996)
Proc. of the 1st World Congress of Nonlinear Analysts
, pp. 395-406
-
-
Ding, T.1
Zanolin, F.2
-
35
-
-
21344470830
-
Multiplicity results for periodic solutions of second order ODEs with asymmetric nonlinearities
-
REBELO, C. & ZANOLIN, F., Multiplicity results for periodic solutions of second order ODEs with asymmetric nonlinearities. Trans. Am. Math. Soc., 1996, 348, 2349-2389.
-
(1996)
Trans. Am. Math. Soc.
, vol.348
, pp. 2349-2389
-
-
Rebelo, C.1
Zanolin, F.2
-
36
-
-
0028483136
-
Subharmonic hysteresis and periodic doubling bifurcations for a periodically driven laser
-
SCHWARTZ, I. B. & ERNEUX, T., Subharmonic hysteresis and periodic doubling bifurcations for a periodically driven laser. SIAM J. Appl. Math., 1994, 54, 1083-1100.
-
(1994)
SIAM J. Appl. Math.
, vol.54
, pp. 1083-1100
-
-
Schwartz, I.B.1
Erneux, T.2
-
37
-
-
0001088475
-
Large-amplitude subharmonic oscillations for scalar second-order differential equations with asymmetric nonlinearities
-
FONDA, A. & RAMOS, M., Large-amplitude subharmonic oscillations for scalar second-order differential equations with asymmetric nonlinearities. J. Diff. Eqns, 1994, 109, 354-372.
-
(1994)
J. Diff. Eqns
, vol.109
, pp. 354-372
-
-
Fonda, A.1
Ramos, M.2
|