-
1
-
-
0025824903
-
An implementation for a fast public-key cryptosystem
-
G.B. Agnew, R.C. Mullin, I.M. Onyszchuk, and S.A. Vanstone, "An Implementation for a Fast Public-Key Cryptosystem," J. Cryptology, vol. 3, pp. 63-79, 1991.
-
(1991)
J. Cryptology
, vol.3
, pp. 63-79
-
-
Agnew, G.B.1
Mullin, R.C.2
Onyszchuk, I.M.3
Vanstone, S.A.4
-
2
-
-
84974687517
-
A secure family of composite finite fields suitable for fast implementation of elliptic curve cryptography
-
Dec.
-
M. Ciet, J.-J. Quisquater, and F. Sica, "A Secure Family of Composite Finite Fields Suitable for Fast Implementation of Elliptic Curve Cryptography," Proc. Indocrypt 2001, pp. 108-116, Dec. 2001.
-
(2001)
Proc. Indocrypt 2001
, pp. 108-116
-
-
Ciet, M.1
Quisquater, J.-J.2
Sica, F.3
-
3
-
-
0036523306
-
m)
-
Mar.
-
m)," IEEE Trans. Computers, vol. 51, no. 3, pp. 346-351, Mar. 2002.
-
(2002)
IEEE Trans. Computers
, vol.51
, Issue.3
, pp. 346-351
-
-
Elia, M.1
Leone, M.2
-
5
-
-
0001057132
-
Optimal normal bases
-
S. Gao and H.W. Lenstra Jr., "Optimal Normal Bases," Designs, Codes, and Cryptography, vol. 2, pp. 315-323, 1992.
-
(1992)
Designs, Codes, and Cryptography
, vol.2
, pp. 315-323
-
-
Gao, S.1
Lenstra H.W., Jr.2
-
6
-
-
0001492981
-
A modified Massey-Omura parallel multiplier for a class of finite fields
-
Oct.
-
M.A. Hasan, M.Z. Wang, and V.K. Bhargava, "A Modified Massey-Omura Parallel Multiplier for a Class of Finite Fields," IEEE Trans. Computers, vol. 42, no. 10, pp. 1278-1280, Oct. 1993.
-
(1993)
IEEE Trans. Computers
, vol.42
, Issue.10
, pp. 1278-1280
-
-
Hasan, M.A.1
Wang, M.Z.2
Bhargava, V.K.3
-
7
-
-
0032023646
-
Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields
-
Mar.
-
C.K. Koc and B. Sunar, "Low-Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields," IEEE Trans. Computers, vol. 47, no. 3, pp. 353-356, Mar. 1998.
-
(1998)
IEEE Trans. Computers
, vol.47
, Issue.3
, pp. 353-356
-
-
Koc, C.K.1
Sunar, B.2
-
9
-
-
0031369480
-
A search of minimal key functions for normal basis multipliers
-
May
-
C.-C. Lu, "A Search of Minimal Key Functions for Normal Basis Multipliers," IEEE Trans. Computers, vol. 46, no. 5, pp. 588-592, May 1997.
-
(1997)
IEEE Trans. Computers
, vol.46
, Issue.5
, pp. 588-592
-
-
Lu, C.-C.1
-
10
-
-
0004216195
-
Computational method and apparatus for finite field arithmetic
-
US Patent No. 4,587,627
-
J.L. Massey and J.K. Omura, "Computational Method and Apparatus for Finite Field Arithmetic," US Patent No. 4,587,627, 1986.
-
(1986)
-
-
Massey, J.L.1
Omura, J.K.2
-
11
-
-
84974693377
-
Analysis of the GHS weil descent attack on the ECDLP over characteristic two finite fields of composite degree
-
Dec.
-
M. Maurer, A. Menezes, and E. Teske, "Analysis of the GHS Weil Descent Attack on the ECDLP over Characteristic Two Finite Fields of Composite Degree," Proc. Indocrypt 2001, pp. 195-213, Dec. 2001.
-
(2001)
Proc. Indocrypt 2001
, pp. 195-213
-
-
Maurer, M.1
Menezes, A.2
Teske, E.3
-
12
-
-
0004129394
-
-
Kluwer Academic
-
A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian, Applications of Finite Fields. Kluwer Academic, 1993.
-
(1993)
Applications of Finite Fields
-
-
Menezes, A.J.1
Blake, I.F.2
Gao, X.3
Mullin, R.C.4
Vanstone, S.A.5
Yaghoobian, T.6
-
13
-
-
45549114790
-
n)
-
n)," Discrete Applied Math., vol. 22, pp. 149-161, 1988/89.
-
(1988)
Discrete Applied Math.
, vol.22
, pp. 149-161
-
-
Mullin, R.C.1
Onyszchuk, I.M.2
Vanstone, S.A.3
Wilson, R.M.4
-
14
-
-
0003508562
-
Digital signature standard
-
Nat'l Inst. of Standards and Technology; FIPS Publication 186-2, Feb.
-
Nat'l Inst. of Standards and Technology, "Digital Signature Standard," FIPS Publication 186-2, Feb. 2000.
-
(2000)
-
-
-
15
-
-
0034291075
-
Efficient normal basis multipliers in composite fields
-
Oct.
-
S. Oh, C.H. Kim, J. Lim, and D.H. Cheon, "Efficient Normal Basis Multipliers in Composite Fields," IEEE Trans. Computers, vol. 49, no. 10, pp. 1133-1138, Oct. 2000.
-
(2000)
IEEE Trans. Computers
, vol.49
, Issue.10
, pp. 1133-1138
-
-
Oh, S.1
Kim, C.H.2
Lim, J.3
Cheon, D.H.4
-
16
-
-
0033204715
-
Fast arithmetic for public-key algorithms in galois fields with composite exponents
-
Oct.
-
C. Paar, P. Fleishmann, and P. Soria-Rodriguez, "Fast Arithmetic for Public-Key Algorithms in Galois Fields with Composite Exponents," IEEE Trans. Computers, vol. 48, no. 10, pp. 1025-1034, Oct. 1999.
-
(1999)
IEEE Trans. Computers
, vol.48
, Issue.10
, pp. 1025-1034
-
-
Paar, C.1
Fleishmann, P.2
Soria-Rodriguez, P.3
-
17
-
-
4243387175
-
Low complexity and fault tolerant arithmetic in binary extended finite fields
-
PhD thesis, Dept. of Electrical and Computer Eng., Univ. of Waterloo, Canada, May
-
A. Reyhani-Masoleh, "Low Complexity and Fault Tolerant Arithmetic in Binary Extended Finite Fields," PhD thesis, Dept. of Electrical and Computer Eng., Univ. of Waterloo, Canada, May 2001.
-
(2001)
-
-
Reyhani-Masoleh, A.1
-
20
-
-
0036566216
-
m)
-
May
-
m)," IEEE Trans. Computers, vol. 51, no. 5, pp. 511-520, May 2002.
-
(2002)
IEEE Trans. Computers
, vol.51
, Issue.5
, pp. 511-520
-
-
Reyhani-Masoleh, A.1
Hasan, M.A.2
-
21
-
-
9144262612
-
Low complexity normal bases
-
J.E. Seguin, "Low Complexity Normal Bases," Discrete Applied Math., vol. 28, pp. 309-312, 1990.
-
(1990)
Discrete Applied Math.
, vol.28
, pp. 309-312
-
-
Seguin, J.E.1
-
22
-
-
84945129506
-
How secure are elliptic curves over composite extension fields?
-
N.P. Smart, "How Secure Are Elliptic Curves over Composite Extension Fields?" Proc. Eurocrypt 2001, pp. 30-39, 2001.
-
(2001)
Proc. Eurocrypt 2001
, pp. 30-39
-
-
Smart, N.P.1
-
23
-
-
0035107422
-
An efficient optimal normal basis type II multiplier
-
Jan.
-
B. Sunar and C.K. Koc, "An Efficient Optimal Normal Basis Type II Multiplier," IEEE Trans. Computers, vol. 50, no. 1, pp. 83-88, Jan. 2001.
-
(2001)
IEEE Trans. Computers
, vol.50
, Issue.1
, pp. 83-88
-
-
Sunar, B.1
Koc, C.K.2
-
25
-
-
0022108239
-
m)
-
Aug.
-
m)," IEEE Trans. Computers, vol. 34, no. 8, pp. 709-716, Aug. 1985.
-
(1985)
IEEE Trans. Computers
, vol.34
, Issue.8
, pp. 709-716
-
-
Wang, C.C.1
Truong, T.K.2
Shao, H.M.3
Deutsch, L.J.4
Omura, J.K.5
Reed, I.S.6
|