-
1
-
-
0001492981
-
A Modified Massey-Omura Parallel Multiplier for a Class of Finite Fields
-
Oct
-
M. A. Hasan, M. Z. Wang, and V. K. Bhargava, “A Modified Massey-Omura Parallel Multiplier for a Class of Finite Fields,” IEEE Transactions on Computers, vol. 42, no. 10, pp. 1278–1280, Oct. 1993. 213, 213, 215, 219, 219
-
(1993)
IEEE Transactions on Computers
, vol.42
, Issue.10
, pp. 1278-1280
-
-
Hasan, M.A.1
Wang, Z.A.V.2
Bhargava, K.3
-
2
-
-
0032023646
-
Low-Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields
-
March
-
C. K. Koc and B. Sunar, “Low-Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields,” IEEE Transactions on Computers, vol. 47, no. 3, pp. 353–356, March 1998. 219, 219
-
(1998)
IEEE Transactions on Computers
, vol.47
, Issue.3
, pp. 353-356
-
-
Koc, C.K.1
Sunar, J.2
-
3
-
-
0031369480
-
A Search of Minimal Key Functions for Normal Basis Multipliers
-
May
-
Chung-Chin Lu, “A Search of Minimal Key Functions for Normal Basis Multipliers,” IEEE Transactions on Computers, vol. 46, no. 5, pp. 588–592, May 1997. 213, 222
-
(1997)
IEEE Transactions on Computers
, vol.46
, Issue.5
, pp. 588-592
-
-
Chung-Chin, L.1
-
4
-
-
84961355784
-
A Cryptographic Application of Weil Descent
-
Springer-Verlag
-
S. D. Galbraith and N. P. Smart, “A Cryptographic Application of Weil Descent,” in Proceedings of Cryptography and Coding, LNCS 1764, pp. 191–200, Springer-Verlag, 1999. 220
-
(1999)
Proceedings of Cryptography and Coding
, vol.1764
, pp. 191-200
-
-
Galbraith, S.D.1
Smart, P.2
-
6
-
-
0004129394
-
-
Kluwer Academic Publishers
-
A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and T. Yaghoobian, Applications of Finite Fields, Kluwer Academic Publishers, 1993. 218
-
(1993)
Applications of Finite Fields
-
-
Menezes, A.J.1
Blake, F.X.2
Gao, R.3
Mullin, C.S.4
Vanstone, A.A.T.5
Yaghoobian, H.6
-
7
-
-
45549114790
-
Optimal normal bases in GF(pn)
-
R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson, “Optimal normal bases in GF(pn),” Discrete Applied Mathematics, vol. 22, pp. 149–161, 1988. 213, 213, 215, 218, 222
-
(1988)
Discrete Applied Mathematics
, vol.22
, pp. 149-161
-
-
Mullin, R.C.1
Onyszchuk, M.S.2
Vanstone, A.A.R.3
Wilson, M.4
-
8
-
-
0002111760
-
A Reduced Redundancy Massey-Omura Parallel Multiplier over GF(2m)
-
Kingston, Ontario, Canada, May
-
A. Reyhani-Masoleh and M. A. Hasan, “A Reduced Redundancy Massey-Omura Parallel Multiplier over GF(2m),” in Proceedings of the 20th Biennial Symposium on Communications, pp. 308–312, Kingston, Ontario, Canada, May 2000. 213, 213, 217, 217, 217, 217, 217, 219, 219, 223, 223
-
(2000)
Proceedings of the 20Th Biennial Symposium on Communications
, pp. 308-312
-
-
Reyhani-Masoleh, A.A.1
Hasan, A.2
-
9
-
-
9144262612
-
Low complexity normal bases
-
J. E. Seguin, “Low complexity normal bases,” Discrete Applied Mathematics, vol. 28, pp. 309–312, 1990. 220
-
(1990)
Discrete Applied Mathematics
, vol.8
, pp. 309-312
-
-
Seguin, J.E.1
-
10
-
-
0021124584
-
Realization and application of the Massey-Omura lock
-
P. K. S. Wah and M. Z. Wang, “Realization and application of the Massey-Omura lock,” Presented at the IEEE Int. Zurich Seminar on Digital Communications, pp. 175–182, 1984. 213, 213, 218
-
(1984)
Presented at the IEEE Int
, pp. 175-182
-
-
Wah, P.K.1
Wang, Z.2
-
11
-
-
0022108239
-
VLSI Architectures for Computing Multiplications and Inverses in GF(2m)
-
Aug
-
C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura and I. S. Reed, “VLSI Architectures for Computing Multiplications and Inverses in GF(2m),” IEEE Transactions on Computers, vol. 34, no. 8, pp. 709–716, Aug. 1985. 213, 217, 217, 217, 219, 219, 223, 223
-
(1985)
IEEE Transactions on Computers
, vol.34
, Issue.8
, pp. 709-716
-
-
Wang, C.C.1
Truong, K.H.2
Shao, M.L.3
Deutsch, J.J.4
Omura, K.5
Reed, S.6
|