-
6
-
-
0001660949
-
-
N. Dan, A. Berman, P. Pincus, and S. Safran, J. Phys. II 4, 1713 (1994).
-
(1994)
J. Phys. II
, vol.4
, pp. 1713
-
-
Dan, N.1
Berman, A.2
Pincus, P.3
Safran, S.4
-
12
-
-
0842283643
-
-
edited by A. G. Volkov (Marcel Dekker, New York)
-
P. Jordan, G. Miloshevsky, and M. Partenskii, in Interfacial Catalysis, edited by A. G. Volkov (Marcel Dekker, New York, 2003), pp. 493-534.
-
(2003)
Interfacial Catalysis
, pp. 493-534
-
-
Jordan, P.1
Miloshevsky, G.2
Partenskii, M.3
-
16
-
-
0021113445
-
-
J. Elliot, D. Needham, J. Digler, and D. Haydon, Biochim. Biophys. Acta 735, 95 (1983).
-
(1983)
Biochim. Biophys. Acta
, vol.735
, pp. 95
-
-
Elliot, J.1
Needham, D.2
Digler, J.3
Haydon, D.4
-
19
-
-
0037696674
-
-
K. Iwasa, G. Ehrenstein, M. Moran, and M. Jia, Biophys. J. 50, 513 (1986).
-
(1986)
Biophys. J
, vol.50
, pp. 513
-
-
Iwasa, K.1
Ehrenstein, G.2
Moran, M.3
Jia, M.4
-
21
-
-
0026576291
-
-
K. Manivannan, S. Ramanan, R. Mathias, and P. Brink, Biophys. J. 61, 216 (1992).
-
(1992)
Biophys. J
, vol.61
, pp. 216
-
-
Manivannan, K.1
Ramanan, S.2
Mathias, R.3
Brink, P.4
-
22
-
-
0034081572
-
-
A. Keleshian, R. Edeson, G.-J. Liu, and B. W. Madsen, Biophys. J. 78, 1 (2000).
-
(2000)
Biophys. J
, vol.78
, pp. 1
-
-
Keleshian, A.1
Edeson, R.2
Liu, G.-J.3
Madsen, B.W.4
-
25
-
-
0032493913
-
-
Washington, DC, U.S.
-
S. Marx, K. Ondrias, and A. Marks, Science (Washington, DC, U.S.) 281, 818 (1998).
-
(1998)
Science
, vol.281
, pp. 818
-
-
Marx, S.1
Ondrias, K.2
Marks, A.3
-
27
-
-
0034694970
-
-
A. V. Krylov, E. A. Kotova, A. A. Yaroslavov, and Y. N. Antonenko, Biochim. Biophys. Acta 1509, 373 (2000).
-
(2000)
Biochim. Biophys. Acta
, vol.1509
, pp. 373
-
-
Krylov, A.V.1
Kotova, E.A.2
Yaroslavov, A.A.3
Antonenko, Y.N.4
-
42
-
-
0031895461
-
-
For a single ion channel this results in a "linear spring model" describing membrane deformation due to insertion as in C. Nielsen, M. Goulian, O. S. Andersen, Biophys. J. 74, 1966 (1998).
-
(1998)
Biophys. J
, vol.74
, pp. 1966
-
-
Nielsen, C.1
Goulian, M.2
Andersen, O.S.3
-
43
-
-
0002082775
-
-
note
-
In contrast, a nonlinear elastic approach has been used in R. Menes and S. Satran, Phys. Rev. E 56, 1891 (1997), where the focus was on the significant membrane thinning due to pinning sites. It should be stressed that linearity means that Euler-Lagrange equations [such as Eq. (3)] are of the form L(u)=0, where L is a linear differential operator, a requirement that imposes no restrictions on the order of the differential equations, typically biharmonic for the problems of interest here.
-
-
-
-
44
-
-
0037696664
-
-
note
-
We omitted the normal coefficient of 1/2 in Eq. (11), a convention corresponding to the definition of the effective spring constant for an individual insertion [Eq. (21) of C. Nielsen, M. Goulian, and O. S. Andersen, Biophys. J. 74, 1966 (1988)]; it has no physical influence. Equation (11) also holds if the contact slopes is not constrained to 0 but adjust spontaneously to minimize the energy. It is also applicable if interaction with the insertion locally stiffens the membrane, an alternative model that accounts for membrane influences on individual channel lifetime. This nonuniform treatment has not yet been extended to account for membrane-mediated interactions. Therefore, we use a conventional model, with the "constrained" boundary condition.
-
-
-
-
45
-
-
0026780730
-
-
J. T. Durkin, L. L. Providence, R. E. I. Koeppe, and O. S. Andersen, Biophys. J. 62, 145 (1992).
-
(1992)
Biophys. J
, vol.62
, pp. 145
-
-
Durkin, J.T.1
Providence, L.L.2
Koeppe, R.E.I.3
Andersen, O.S.4
-
48
-
-
0035797933
-
-
W. A. Tucker, S. Sham, L. E. Townsley, and J. F. Hinton, Biochemistry 40, 11676 (2001).
-
(2001)
Biochemistry
, vol.40
, pp. 11676
-
-
Tucker, W.A.1
Sham, S.2
Townsley, L.E.3
Hinton, J.F.4
-
49
-
-
0030183359
-
-
R. R. Ketchem, K. C. Lee, S. Huo, and T. A. Cross, J. Biomol. NMR 8, 1 (1996).
-
(1996)
J. Biomol. NMR
, vol.8
, pp. 1
-
-
Ketchem, R.R.1
Lee, K.C.2
Huo, S.3
Cross, T.A.4
-
52
-
-
0038711050
-
-
note
-
At small d, an elastic treatment of membrane regions between inclusions is clearly suspect. However, in the regions surrounding the cluster, it is about as realistic as for isolated insertions. While the inter-inclusion area becomes negligible as d→0, the surroundings approach some fixed limit, roughly a semielliptic cylinder embedding two insertions in contact. This leads to some error compensation in the elastic description at small separations because in the area integrals defining the energy, Eq. (2), the ambiguous (inner) contributions almost vanish. This is probably why the elastic approach was effectively used at nearly all interinclusion separations. The elimination of these inner regions indicates that a major source of the elastic force stabilizing two insertions in direct contact is the reduction in the total membrane area effectively perturbed by the inclusions; the "circumference" of two inclusions in contact is less than twice that of a single one.
-
-
-
-
53
-
-
0027323735
-
-
J. T. Durkin, L. L. Providence, R. E. I. Koeppe, and O. S. Andersen, J. Mol. Biol. 231, 1102 (1992).
-
(1992)
J. Mol. Biol.
, vol.231
, pp. 1102
-
-
Durkin, J.T.1
Providence, L.L.2
Koeppe, R.E.I.3
Andersen, O.S.4
-
54
-
-
0004251709
-
-
Wiley, New York
-
H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry (Wiley, New York, 1944), pp. 299-331.
-
(1944)
Quantum Chemistry
, pp. 299-331
-
-
Eyring, H.1
Walter, J.2
Kimball, G.E.3
-
55
-
-
0037143362
-
-
I. Tolokh, G. W. N. White, S. Goldman, and C. G. Gray, Mol. Phys. 35, 2351 (2002).
-
(2002)
Mol. Phys.
, vol.35
, pp. 2351
-
-
Tolokh, I.1
White, G.W.N.2
Goldman, S.3
Gray, C.G.4
|