-
2
-
-
0030525001
-
A sequel to AUSM: AUSM(+)
-
Liou M.-S. A sequel to AUSM: AUSM(+) J. Comput. Phys. 129 2 1996 364-382
-
(1996)
J. Comput. Phys.
, vol.129
, Issue.2
, pp. 364-382
-
-
Liou, M.-S.1
-
3
-
-
0000104186
-
Mass flux schemes and connection to shock instability
-
Liou M.-S. Mass flux schemes and connection to shock instability J. Comput. Phys. 160 2000 623-648
-
(2000)
J. Comput. Phys.
, vol.160
, pp. 623-648
-
-
Liou, M.-S.1
-
4
-
-
0031129192
-
An accurate and robust flux splitting scheme for shock and contact discontinuity
-
Wada Y. Liou M.-S. An accurate and robust flux splitting scheme for shock and contact discontinuity SIAM J. Sci. Comput. 18 3 1997 633-657
-
(1997)
SIAM J. Sci. Comput.
, vol.18
, Issue.3
, pp. 633-657
-
-
Wada, Y.1
Liou, M.-S.2
-
5
-
-
0031190973
-
A low-diffusion flux-splitting scheme for Navier-Stokes calculations
-
Edwards J.R. A low-diffusion flux-splitting scheme for Navier-Stokes calculations Comput. Fluids 26 6 1997 635-659
-
(1997)
Comput. Fluids
, vol.26
, Issue.6
, pp. 635-659
-
-
Edwards, J.R.1
-
6
-
-
0021413939
-
Riemann solvers, the entropy conditions, and difference approximations
-
Osher S. Riemann solvers, the entropy conditions, and difference approximations SIAM J. Num. Anal. 21 1984 217-235
-
(1984)
SIAM J. Num. Anal.
, vol.21
, pp. 217-235
-
-
Osher, S.1
-
7
-
-
0000876320
-
On upstream differencing and Godunov schemes for hyperbolic conservation laws
-
Harten A. Lax P.D. van Leer B. On upstream differencing and Godunov schemes for hyperbolic conservation laws SIAM Rev. 25 1981 35-61
-
(1981)
SIAM Rev.
, vol.25
, pp. 35-61
-
-
Harten, A.1
Lax, P.D.2
van Leer, B.3
-
8
-
-
0005071955
-
The use of Riemann problem in finite difference schemes
-
Roe P.L. The use of Riemann problem in finite difference schemes Lectures Notes Phys. 141 1980 354-359
-
(1980)
Lectures Notes Phys.
, vol.141
, pp. 354-359
-
-
Roe, P.L.1
-
9
-
-
2942757053
-
Approximate Riemann solvers, parameters vectors and difference schemes
-
Roe P.L. Approximate Riemann solvers, parameters vectors and difference schemes J. Comput. Phys. 43 1981 357-372
-
(1981)
J. Comput. Phys.
, vol.43
, pp. 357-372
-
-
Roe, P.L.1
-
11
-
-
0032077801
-
An approximate Riemann solver for a two-phase flow model with numerically given slip relation
-
Romate J.E. An approximate Riemann solver for a two-phase flow model with numerically given slip relation Comput. Fluid 27 4 1998 455-477
-
(1998)
Comput. Fluid
, vol.27
, Issue.4
, pp. 455-477
-
-
Romate, J.E.1
-
12
-
-
0033082107
-
A rough finite volume scheme for modeling two-phase flow in a pipeline
-
Faille I. Heintze E. A rough finite volume scheme for modeling two-phase flow in a pipeline Comput. Fluids 28 1999 213-241
-
(1999)
Comput. Fluids
, vol.28
, pp. 213-241
-
-
Faille, I.1
Heintze, E.2
-
14
-
-
0030153105
-
Lagrangian coordinates for a drift-flux model of a gas-liquid mixture
-
Gavrilyuk S.L. Fabre J. Lagrangian coordinates for a drift-flux model of a gas-liquid mixture Int. J. Multiph. Flow 22 3 1996 453-460
-
(1996)
Int. J. Multiph. Flow
, vol.22
, Issue.3
, pp. 453-460
-
-
Gavrilyuk, S.L.1
Fabre, J.2
-
15
-
-
0036497384
-
High-resolution hybrid primitive-conservative upwind schemes for the drift flux model
-
Fjelde K.-K. Karlsen K.-H. High-resolution hybrid primitive-conservative upwind schemes for the drift flux model Comput. Fluids 31 2002 335-367
-
(2002)
Comput. Fluids
, vol.31
, pp. 335-367
-
-
Fjelde, K.-K.1
Karlsen, K.-H.2
-
16
-
-
0037137980
-
Hybrid flux-splitting schemes for a two-phase flow model
-
Evje S. Fjelde K.-K. Hybrid flux-splitting schemes for a two-phase flow model J. Comput. Phys. 175 2 2002 674-701
-
(2002)
J. Comput. Phys.
, vol.175
, Issue.2
, pp. 674-701
-
-
Evje, S.1
Fjelde, K.-K.2
-
17
-
-
0027556245
-
Development of high-accuracy convection schemes for sequential solvers
-
Thakur S. Shyy W. Development of high-accuracy convection schemes for sequential solvers Numer. Heat Transf., Part B 23 1993 175-199
-
(1993)
Numer. Heat Transf.
, vol.23
, Issue.PART B
, pp. 175-199
-
-
Thakur, S.1
Shyy, W.2
-
18
-
-
0029734313
-
Convection treatment and pressure splitting for sequential solution procedures, Part I: Theory and one-dimensional test cases
-
Thakur S. Shyy W. Liou M.-S. Convection treatment and pressure splitting for sequential solution procedures, Part I: Theory and one-dimensional test cases Numer. Heat Transf., Part B 29 1996 1-27
-
(1996)
Numer. Heat Transf.
, vol.29
, Issue.PART B
, pp. 1-27
-
-
Thakur, S.1
Shyy, W.2
Liou, M.-S.3
-
19
-
-
0001367016
-
Simple conservative flux splitting for multi-component flow calculations
-
Niu Y.Y. Simple conservative flux splitting for multi-component flow calculations Numer. Heat Transf. 38 2000 203-222
-
(2000)
Numer. Heat Transf.
, vol.38
, pp. 203-222
-
-
Niu, Y.Y.1
-
20
-
-
0034274885
-
Low-diffusion flux-splitting methods for real fluid flows with phase transition
-
Edwards J.R. Franklin R.K. Liou M.-S. Low-diffusion flux-splitting methods for real fluid flows with phase transition AIAA J. 38 9 2000 1624-1633
-
(2000)
AIAA J.
, vol.38
, Issue.9
, pp. 1624-1633
-
-
Edwards, J.R.1
Franklin, R.K.2
Liou, M.-S.3
-
21
-
-
0035909956
-
Distribution parameter and drift velocity of drift-flux model in bubbly flow
-
Hibiki T. Ishii M. Distribution parameter and drift velocity of drift-flux model in bubbly flow Int. J. Numer. Heat Transf. 45 2002 707-721
-
(2002)
Int. J. Numer. Heat Transf.
, vol.45
, pp. 707-721
-
-
Hibiki, T.1
Ishii, M.2
-
25
-
-
0000453066
-
A density perturbation method to study the eigenstructure of two-phase flow equation systems
-
Cortes J. Debussche A. Toumi I. A density perturbation method to study the eigenstructure of two-phase flow equation systems J. Comput. Phys. 147 1998 463-484
-
(1998)
J. Comput. Phys.
, vol.147
, pp. 463-484
-
-
Cortes, J.1
Debussche, A.2
Toumi, I.3
-
26
-
-
0030584632
-
An approximate linearized Riemann solver for a two-fluid model
-
Kumbaro A. Toumi I. An approximate linearized Riemann solver for a two-fluid model J. Comput. Phys. 124 1996 286-300
-
(1996)
J. Comput. Phys.
, vol.124
, pp. 286-300
-
-
Kumbaro, A.1
Toumi, I.2
-
27
-
-
0001485352
-
A multiphase Godunov method for compressible multifluid and multiphase flows
-
Saurel R. Abgrall R. A multiphase Godunov method for compressible multifluid and multiphase flows J. Comput. Phys. 150 1999 425-467
-
(1999)
J. Comput. Phys.
, vol.150
, pp. 425-467
-
-
Saurel, R.1
Abgrall, R.2
-
28
-
-
0031572061
-
Modelling of two-phase flow with second-order accurate scheme
-
Tiselj I. Petelin S. Modelling of two-phase flow with second-order accurate scheme J. Comput. Phys. 136 1997 503-521
-
(1997)
J. Comput. Phys.
, vol.136
, pp. 503-521
-
-
Tiselj, I.1
Petelin, S.2
-
29
-
-
0030170327
-
An upwind numerical method for two-fluid two-phase flow models
-
Toumi I. An upwind numerical method for two-fluid two-phase flow models Nucl. Sci. Eng. 123 1996 147-168
-
(1996)
Nucl. Sci. Eng.
, vol.123
, pp. 147-168
-
-
Toumi, I.1
-
30
-
-
0034195240
-
A mechanistic model for multiphase flow in pipes
-
Petalas N. Aziz K. A mechanistic model for multiphase flow in pipes J. Canadian Petroleum Tech. 39 6 2000 43-55
-
(2000)
J. Canadian Petroleum Tech.
, vol.39
, Issue.6
, pp. 43-55
-
-
Petalas, N.1
Aziz, K.2
-
35
-
-
0029779186
-
Convection treatment and pressure splitting for sequential solution procedures, Part II: Pressure-based algorithm
-
Thakur S. Shyy W. Liou M.-S. Convection treatment and pressure splitting for sequential solution procedures, Part II: Pressure-based algorithm Numer. Heat Transf., Part B 29 1996 1-27
-
(1996)
Numer. Heat Transf.
, vol.29
, Issue.PART B
, pp. 1-27
-
-
Thakur, S.1
Shyy, W.2
Liou, M.-S.3
-
36
-
-
0020223604
-
Flux-vector splitting for the Euler equations
-
van Leer B. Flux-vector splitting for the Euler equations Lecture Notes Phys. 170 1982 507-512
-
(1982)
Lecture Notes Phys.
, vol.170
, pp. 507-512
-
-
van Leer, B.1
-
37
-
-
2442433925
-
Towards the ultimate conservative difference scheme, V. A second-order sequel to Godunov's method
-
van Leer B. Towards the ultimate conservative difference scheme, V. A second-order sequel to Godunov's method J. Comput. Phys. 32 1979 101-136
-
(1979)
J. Comput. Phys.
, vol.32
, pp. 101-136
-
-
van Leer, B.1
|