메뉴 건너뛰기




Volumn 13, Issue 2, 2003, Pages 151-176

Extrapolation detection and novelty-based node insertion for sequential growing multi-experts network

Author keywords

Certainty factor; Extrapolation; Novelty based insertion; On line learning

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; EXTRAPOLATION; LEARNING SYSTEMS; MATHEMATICAL MODELS;

EID: 0038284255     PISSN: 12100552     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (3)

References (25)
  • 1
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K.: Multilayer feedforward networks are universal approximators, Neural Networks, 2, 5, 1989, pp. 359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1
  • 2
    • 0001002401 scopus 로고
    • Universal approximation using radial basis function networks
    • Park J., Sandberg I. W.: Universal approximation using radial basis function networks, Neural Computation, 5, 2, 1991, pp. 305-316.
    • (1991) Neural Computation , vol.5 , Issue.2 , pp. 305-316
    • Park, J.1    Sandberg, I.W.2
  • 7
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • Girosi F., Jones M., Poggio T.: Regularization Theory and Neural Networks Architectures, Neural Computation, 7, 2, 1995, pp. 219-269.
    • (1995) Neural Computation , vol.7 , Issue.2 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 8
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned processing units
    • Moody, J., Darken C. J.: Fast learning in networks of locally tuned processing units, Neural Computation, 1, 1989, pp. 281-294.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 9
    • 0001948145 scopus 로고
    • Fast learning with incremental RBF networks
    • Fritzke B.: Fast learning with incremental RBF networks, Neural Processing Letters, 1, 1, 1994, pp. 2-5.
    • (1994) Neural Processing Letters , vol.1 , Issue.1 , pp. 2-5
    • Fritzke, B.1
  • 10
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht D. E.: A General Regression Neural Network, IEEE Transactions on Neural Networks, 2, 6, 1991, pp. 568-576.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.E.1
  • 13
    • 0021892282 scopus 로고    scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., Sugeno M.: Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on System, Man and Cybernetics, 15, 1, pp. 116-132.
    • IEEE Transactions on System, Man and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 16
    • 84964009081 scopus 로고    scopus 로고
    • From isolation to cooperation: An alternative view of a system of experts
    • Cambridge, MA: MIT Press
    • Schaal S., Atkeson C. G.: From Isolation to Cooperation: An Alternative View of a System of Experts, Advances in Neural Information Processing Systems, 8, Cambridge, MA: MIT Press, 1996, pp. 605-611.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 605-611
    • Schaal, S.1    Atkeson, C.G.2
  • 18
    • 0003723679 scopus 로고
    • Theory and practice of recursive identification
    • Cambridge, MIT Press
    • Ljung L., Soderstrom T.: Theory and practice of recursive identification, Cambridge, MIT Press, 1983, pp. 57-59.
    • (1983) , pp. 57-59
    • Ljung, L.1    Soderstrom, T.2
  • 19
    • 0030110883 scopus 로고    scopus 로고
    • Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model
    • Donald K., Wedding II, Cios K. J.: Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model, Neurocomputing, 10, 1996, pp. 149-168.
    • (1996) Neurocomputing , vol.10 , pp. 149-168
    • Donald, K.1    Wedding, I.I.2    Cios, K.J.3
  • 20
    • 0028204732 scopus 로고
    • Topology representing networks
    • Martinetz T. M.: Topology representing networks, Neural Networks, 7, 3, 1994, pp. 507-522.
    • (1994) Neural Networks , vol.7 , Issue.3 , pp. 507-522
    • Martinetz, T.M.1
  • 21
    • 0003575434 scopus 로고
    • The Delaunay triangulation and function learning
    • Tr-90-001, International Computer Science Institute, Berkeley
    • Omohundro S. M.: The Delaunay triangulation and function learning, Tr-90-001, International Computer Science Institute, Berkeley, 1990.
    • (1990)
    • Omohundro, S.M.1
  • 23
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function network
    • Chen S., Cowan C. F. N., Grant P. M.: Orthogonal least squares learning algorithm for radial basis function network, IEEE Transactions on Neural Networks, 2, 1991, pp. 302-309.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 24
    • 0030283350 scopus 로고    scopus 로고
    • Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction
    • Cho, K. B., Wang B. H.: Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction, Fuzzy Sets and Systems, 83, 1996, pp. 325-339.
    • (1996) Fuzzy Sets and Systems , vol.83 , pp. 325-339
    • Cho, K.B.1    Wang, B.H.2
  • 25
    • 0031139313 scopus 로고    scopus 로고
    • Nonlinear control structure based on embedded neural system models
    • Lightbody G., Irwin, G. W.: Nonlinear Control Structure Based on Embedded Neural System Models, IEEE Transactions on Neural Networks, 8, 1997, pp. 553-567.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , pp. 553-567
    • Lightbody, G.1    Irwin, G.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.