메뉴 건너뛰기




Volumn 5, Issue 2, 2003, Pages 95-109

Bayes error rate estimation using classifier ensembles

Author keywords

Bayes error; Combining; Ensembles; Error bounds; Error estimate

Indexed keywords

APPROXIMATION THEORY; LEARNING SYSTEMS; NEURAL NETWORKS; PROBABILITY; STATISTICAL METHODS;

EID: 0038202195     PISSN: 10255818     EISSN: None     Source Type: Journal    
DOI: 10.1080/10255810305042     Document Type: Article
Times cited : (30)

References (68)
  • 1
    • 0003503113 scopus 로고
    • On the link between error correlation and error reduction in decision tree ensembles
    • Department of Information and Computer Science, University of California, Irvine
    • Ali, K. M., and M. J. Pazzani. 1995. On the link between error correlation and error reduction in decision tree ensembles. Technical Report 95-38, Department of Information and Computer Science, University of California, Irvine.
    • (1995) Technical Report 95-38
    • Ali, K.M.1    Pazzani, M.J.2
  • 2
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function theory
    • Barron, A. R. 1993. Universal approximation bounds for superpositions of a sigmoidal function theory. IEEE Transactions on Information Theory 39(3): 930-945.
    • (1993) IEEE Transactions on Information Theory , vol.39 , Issue.3 , pp. 930-945
    • Barron, A.R.1
  • 3
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti, R. 1994. Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks 5(4): 537-550.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. 1996. Bagging predictors. Machine Learning 24(2): 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 10
    • 0027574734 scopus 로고
    • Improving k-nearest neighbor density and error estimates
    • Buturović, L. J. 1993. Improving k-nearest neighbor density and error estimates. Pattern Recognition 26(4): 611-616.
    • (1993) Pattern Recognition , vol.26 , Issue.4 , pp. 611-616
    • Buturović, L.J.1
  • 11
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • Cohn, D., R. Atlas, and L. Ladner. 1994. Improving generalization with active learning. Machine Learning 15(2): 201-221.
    • (1994) Machine Learning , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, R.2    Ladner, L.3
  • 22
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • Fraser, A. M., and H. L. Swinney. 1986. Independent coordinates for strange attractors from mutual information. Physical Review A 33: 1134-1140.
    • (1986) Physical Review A , vol.33 , pp. 1134-1140
    • Fraser, A.M.1    Swinney, H.L.2
  • 24
    • 0038800233 scopus 로고
    • The estimation of the Bayes error by the k-nearest neighbor approach
    • eds. L. N. Kanal and A. Rosenfeld. Amsterdam: North-Holland
    • Fukunaga, K. 1985. The estimation of the Bayes error by the k-nearest neighbor approach. In Progress in Pattern Recognition 2, eds. L. N. Kanal and A. Rosenfeld, 169-187. Amsterdam: North-Holland.
    • (1985) Progress in Pattern Recognition , vol.2 , pp. 169-187
    • Fukunaga, K.1
  • 29
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman, S., E. Bienenstock, and R. Doursat. 1992. Neural networks and the bias/variance dilemma. Neural Computation, 4(1): 1-58.
    • (1992) Neural Computation , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 30
    • 84925487039 scopus 로고    scopus 로고
    • Multiclassifier systems: Back to the future
    • Multiple Classifier Systems, eds. F. Roli and J. Kittler. Berlin: Springer
    • Ghosh, J. 2002. Multiclassifier systems: Back to the future. In Multiple Classifier Systems, eds. F. Roli and J. Kittler, 1-15, LNCS Vol. 2364. Berlin: Springer.
    • (2002) LNCS , vol.2364 , pp. 1-15
    • Ghosh, J.1
  • 31
    • 0026939766 scopus 로고
    • A neural network based hybrid system for detection, characterization and classification of short-duration oceanic signals
    • Ghosh, J., L. Deuser, and S. Beck. 1992. A neural network based hybrid system for detection, characterization and classification of short-duration oceanic signals. IEEE Journal of Ocean Engineering, 17(4): 351-363.
    • (1992) IEEE Journal of Ocean Engineering , vol.17 , Issue.4 , pp. 351-363
    • Ghosh, J.1    Deuser, L.2    Beck, S.3
  • 32
    • 0000703707 scopus 로고
    • Structural adaptation and generalization in supervised feedforward networks
    • Ghosh, J., and K. Tumer. 1994. Structural adaptation and generalization in supervised feedforward networks. Journal of Artificial Neural Networks, 1 (4): 431-458.
    • (1994) Journal of Artificial Neural Networks , vol.1 , Issue.4 , pp. 431-458
    • Ghosh, J.1    Tumer, K.2
  • 37
    • 0029372769 scopus 로고
    • Method for combining experts' probability assessments
    • Jacobs, R. 1995. Method for combining experts' probability assessments. Neural Computation 7(5): 867-888.
    • (1995) Neural Computation , vol.7 , Issue.5 , pp. 867-888
    • Jacobs, R.1
  • 40
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation and active learning
    • eds. G. Tesauro, D. S. Touretzky, and T. K. Leen. Cambridge, MA: The M.I.T. Press
    • Krogh, A., and J. Vedelsby. 1995. Neural network ensembles, cross validation and active learning. In Advances in Neural Information Processing Systems-7, eds. G. Tesauro, D. S. Touretzky, and T. K. Leen, 231-238. Cambridge, MA: The M.I.T. Press.
    • (1995) Advances in Neural Information Processing Systems-7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 41
    • 0026140690 scopus 로고
    • Optimized feature extraction and the Bayes decision in feed-forward classifier networks
    • Lowe, D., and A. R. Webb. 1991. Optimized feature extraction and the Bayes decision in feed-forward classifier networks. IEEE Trans. PAMI 13: 355-364.
    • (1991) IEEE Trans. PAMI , vol.13 , pp. 355-364
    • Lowe, D.1    Webb, A.R.2
  • 42
    • 0000175307 scopus 로고
    • Training knowledge-based neural networks to recognize genes in DNA sequences
    • eds. R.P. Lippmann, J.E. Moody, and D.S. Touretzky. San Mateo, CA: Morgan Kaufmann
    • Noordewier, M. O., G. G. Towell, and J. W. Shavlik. 1991. Training knowledge-based neural networks to recognize genes in DNA sequences. In Advances in Neural Information Processing Systems-3, eds. R.P. Lippmann, J.E. Moody, and D.S. Touretzky, 530-536. San Mateo, CA: Morgan Kaufmann.
    • (1991) Advances in Neural Information Processing Systems-3 , pp. 530-536
    • Noordewier, M.O.1    Towell, G.G.2    Shavlik, J.W.3
  • 43
    • 85156192015 scopus 로고    scopus 로고
    • Generating accurate and diverse members of a neural-network ensemble
    • eds. D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo. Cambridge, MA: The M.I.T. Press
    • Opitz, D. W., and J. W. Snavlik. 1996. Generating accurate and diverse members of a neural-network ensemble. In Advances in Neural Information Processing Systems-8, eds. D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, 535-541. Cambridge, MA: The M.I.T. Press.
    • (1996) Advances in Neural Information Processing Systems-8 , pp. 535-541
    • Opitz, D.W.1    Snavlik, J.W.2
  • 44
    • 0001002401 scopus 로고
    • Universal approximation and radial basis function networks
    • Park, J., and I. W. Sandberg, 1993. Universal approximation and radial basis function networks. Neural Computation, 5: 305-316.
    • (1993) Neural Computation , vol.5 , pp. 305-316
    • Park, J.1    Sandberg, I.W.2
  • 46
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble methods for hybrid neural networks
    • ed. R. J. Mammone, chapter 10. London: Chapmann-Hall
    • Perrone, M. P., and L. N. Cooper. 1993. When networks disagree: Ensemble methods for hybrid neural networks. In Neural Networks for Speech and Image Processing, ed. R. J. Mammone, chapter 10. London: Chapmann-Hall.
    • (1993) Neural Networks for Speech and Image Processing
    • Perrone, M.P.1    Cooper, L.N.2
  • 47
    • 0004114283 scopus 로고
    • PROBEN1 - A set of benchmarks and benchmarking rules for neural network training algorithms
    • Fakultät für Informatik, Universität Karlsruhe, D-76128 Karlsruhe, Germany, September 1994. Anonymous FTP: /pub/papers/techreports/1994/1994-21.ps.Z on ftp.ira.uka.de
    • Prechelt, L. 1994. PROBEN1 - A set of benchmarks and benchmarking rules for neural network training algorithms. Technical Report 21/94, Fakultät für Informatik, Universität Karlsruhe, D-76128 Karlsruhe, Germany, September 1994. Anonymous FTP: /pub/papers/techreports/1994/1994-21.ps.Z on ftp.ira.uka.de.
    • (1994) Technical Report 21/94
    • Prechelt, L.1
  • 48
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • Richard, M. D., and R. P. Lippmann. 1991. Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Computation, 3(4): 461-483.
    • (1991) Neural Computation , vol.3 , Issue.4 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 56
    • 0037785620 scopus 로고
    • Least squares learning and approximation of posterior probabilities on classification problems by neural network models
    • Auburn, February 1991
    • Shoemaker, P. A., M. J. Carlin, R. L. Shimabukuro, and C. E. Priebe. 1991. Least squares learning and approximation of posterior probabilities on classification problems by neural network models. In Proc. 2nd Workshop on Neural Networks (WNN-AIND91), Pages 187-196, Auburn, February 1991.
    • (1991) Proc. 2nd Workshop on Neural Networks (WNN-AIND91) , pp. 187-196
    • Shoemaker, P.A.1    Carlin, M.J.2    Shimabukuro, R.L.3    Priebe, C.E.4
  • 57
    • 0003189388 scopus 로고
    • Interpretation of artificial neural networks: Mapping knowledge-based neural networks into rules
    • eds. J.E. Moody, S.J. Hanson, and R.P. Lippmann. New York: Morgan Kaufmann, 1992
    • Towell, G. G., and J. W. Shavlik. 1992. Interpretation of artificial neural networks: Mapping knowledge-based neural networks into rules. In Advances in Neural Information Processing Systems-4, eds. J.E. Moody, S.J. Hanson, and R.P. Lippmann, 977-984. New York: Morgan Kaufmann, 1992.
    • (1992) Advances in Neural Information Processing Systems-4 , pp. 977-984
    • Towell, G.G.1    Shavlik, J.W.2
  • 58
    • 0032295504 scopus 로고    scopus 로고
    • A mutual information based ensemble method to estimate the Bayes error
    • eds. C. Dagli et al. New York: ASME Press
    • Tumer, K., K. D. Bollacker, and J. Ghosh. 1998. A mutual information based ensemble method to estimate the Bayes error. In Intelligent Engineering Systems through Artificial Neural Networks, eds. C. Dagli et al., volume 8, 17-22. New York: ASME Press.
    • (1998) Intelligent Engineering Systems Through Artificial Neural Networks , vol.8 , pp. 17-22
    • Tumer, K.1    Bollacker, K.D.2    Ghosh, J.3
  • 59
    • 0030085913 scopus 로고    scopus 로고
    • Analysis of decision boundaries in linearly combined neural classifiers
    • Tumer, K., and J. Ghosh. 1996a. Analysis of decision boundaries in linearly combined neural classifiers. Pattern Recognition, 29(2): 341-348.
    • (1996) Pattern Recognition , vol.29 , Issue.2 , pp. 341-348
    • Tumer, K.1    Ghosh, J.2
  • 60
    • 0030365938 scopus 로고    scopus 로고
    • Error correlation and error reduction in ensemble classifiers
    • Tumer, K., and J. Ghosh. 1996b. Error correlation and error reduction in ensemble classifiers. Connection Science 8(3 & 4): 385-404.
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 385-404
    • Tumer, K.1    Ghosh, J.2
  • 61
    • 0001562581 scopus 로고    scopus 로고
    • Linear and order statistics combiners for pattern classification
    • ed. A. J. C. Sharkey. London: Springer-Verlag
    • Tumer, K., and J. Ghosh. 1999. Linear and order statistics combiners for pattern classification. In Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems, ed. A. J. C. Sharkey, 127-162. London: Springer-Verlag.
    • (1999) Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems , pp. 127-162
    • Tumer, K.1    Ghosh, J.2
  • 62
    • 0036088195 scopus 로고    scopus 로고
    • Robust combining of disparate classifiers through order statistics
    • Tumer, K., and J. Ghosh. 2002. Robust combining of disparate classifiers through order statistics. Pattern Analysis and Applications 5(2): 189-200.
    • (2002) Pattern Analysis and Applications , vol.5 , Issue.2 , pp. 189-200
    • Tumer, K.1    Ghosh, J.2
  • 64
    • 0038462449 scopus 로고    scopus 로고
    • Spectroscopic detection of cervical pre-cancer through radial basis function networks
    • eds. M. C. Mozer, M. I. Jordan, and T. Petsche. Cambridge, MA: The M.I.T. Press
    • Tumer, K., N. Ramanujam, R. Richards-Kortum, and J. Ghosh. 1997. Spectroscopic detection of cervical pre-cancer through radial basis function networks. In Advances in Neural Information Processing Systems-9, eds. M. C. Mozer, M. I. Jordan, and T. Petsche, 981-987. Cambridge, MA: The M.I.T. Press.
    • (1997) Advances in Neural Information Processing Systems-9 , pp. 981-987
    • Tumer, K.1    Ramanujam, N.2    Richards-Kortum, R.3    Ghosh, J.4
  • 65
    • 0000459352 scopus 로고    scopus 로고
    • The existence of a priori distinctions between learning algorithms
    • Wolpert, D. H. 1996. The existence of a priori distinctions between learning algorithms. Neural Computation 8: 1391-1420.
    • (1996) Neural Computation , vol.8 , pp. 1391-1420
    • Wolpert, D.H.1
  • 66
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a priori distinctions between learning algorithms
    • Wolpert, D. H. 1996. The lack of a priori distinctions between learning algorithms. Neural Computation 8: 1341-1390.
    • (1996) Neural Computation , vol.8 , pp. 1341-1390
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.