메뉴 건너뛰기




Volumn 16, Issue 5-6, 2003, Pages 855-864

A novel neural network-based survival analysis model

Author keywords

Bayesian learning; Conditioning probability estimation; MCMC methods; Neural networks; Survival analysis

Indexed keywords

DATA ACQUISITION; PARAMETER ESTIMATION; PROBABILITY;

EID: 0038016960     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(03)00098-4     Document Type: Conference Paper
Times cited : (38)

References (19)
  • 2
    • 0036199021 scopus 로고    scopus 로고
    • A general framework for neural network models on censored survival data
    • Biganzoli E., Boracchi P., Marubini E. A general framework for neural network models on censored survival data. Neural Networks. 15:2002;209-218.
    • (2002) Neural Networks , vol.15 , pp. 209-218
    • Biganzoli, E.1    Boracchi, P.2    Marubini, E.3
  • 4
    • 0033375308 scopus 로고    scopus 로고
    • A prognostic model that makes quantitative estimates of probability of relapse for breast cancer patients
    • De Laurentiis M., De Placido S., Bianco A.R., Clark G.M., Ravdin P.M. A prognostic model that makes quantitative estimates of probability of relapse for breast cancer patients. Clinical Cancer Research. 19:1999;4133-4139.
    • (1999) Clinical Cancer Research , vol.19 , pp. 4133-4139
    • De Laurentiis, M.1    De Placido, S.2    Bianco, A.R.3    Clark, G.M.4    Ravdin, P.M.5
  • 5
    • 0028855843 scopus 로고
    • A neural network model for survival data
    • Faraggi D., Simon R. A neural network model for survival data. Statistics in Medicine. 14:1995;73-82.
    • (1995) Statistics in Medicine , vol.14 , pp. 73-82
    • Faraggi, D.1    Simon, R.2
  • 8
    • 0034871988 scopus 로고    scopus 로고
    • Are neural networks best used to help logistic regression? An example from breast cancer survival analysis
    • Lisboa P.J.G., Wong H. Are neural networks best used to help logistic regression? An example from breast cancer survival analysis. IEEE Transactions on Neural Networks. 2001;2472-2477.
    • (2001) IEEE Transactions on Neural Networks , pp. 2472-2477
    • Lisboa, P.J.G.1    Wong, H.2
  • 9
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay D.J.C. A practical Bayesian framework for backpropagation networks. Neural Computation. 4:(3):1992;448-472.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.C.1
  • 13
    • 0001348541 scopus 로고
    • Accounting for model uncertainty in survival analysis improves predictive performance
    • Raftery A.E., Madigan D., Volinsky C.T. Accounting for model uncertainty in survival analysis improves predictive performance. Bayesian Statistics. 5:1994;323-349.
    • (1994) Bayesian Statistics , vol.5 , pp. 323-349
    • Raftery, A.E.1    Madigan, D.2    Volinsky, C.T.3
  • 14
    • 0011827330 scopus 로고    scopus 로고
    • Neural Networks as statistical methods in survival analysis
    • R. Dybowsky, & V. Gant. Landes Biosciences
    • Ripley B.D., Ripley R.M. Neural Networks as statistical methods in survival analysis. Dybowsky R., Gant V. Artificial neural networks: Prospects for medicine. 1998;Landes Biosciences.
    • (1998) Artificial neural networks: Prospects for medicine
    • Ripley, B.D.1    Ripley, R.M.2
  • 18
    • 0034728368 scopus 로고    scopus 로고
    • On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
    • Schwarzer G., Vach W., Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Statistics in Medicine. 19:2000;541-561.
    • (2000) Statistics in Medicine , vol.19 , pp. 541-561
    • Schwarzer, G.1    Vach, W.2    Schumacher, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.