-
3
-
-
0012462059
-
-
A. H. MacDonald, in Mesoscopic Quantum Physics, Proceedings of the 1994 Les Houches Summer School, Session LXI, edited by E. Akkermans et. al (Elsevier Science, Amsterdam, 1995), pp. 659-720.
-
(1995)
Mesoscopic Quantum Physics, Proceedings of the 1994 Les Houches Summer School, Session LXI
, pp. 659-720
-
-
MacDonald, A.1
-
4
-
-
33749473931
-
-
For a smooth confining potential (i.e., a potential that varies slowly on a microscopic length scale), electrostatics most dominantly determines the structure of the edge; see, for example, D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman, Phys. Rev. B 46, 4026 (1992).
-
(1992)
Phys. Rev. B
, vol.46
, pp. 4026
-
-
Chklovskii, D.1
Shklovskii, B.2
Glazman, L.3
-
5
-
-
0001320449
-
-
The simple 1D models discussed in our work do not apply in this case. Most likely, the edge is smooth in most quantum Hall systems. The cleaved-edge overgrowth technique [L. N. Pfeiffer et. al Appl. Phys. Lett. 56, 1697 (1990)] offers one method which can be used to create QH samples with sharp edges.
-
(1990)
Appl. Phys. Lett.
, vol.56
, pp. 1697
-
-
Pfeiffer, L.1
-
6
-
-
0000130913
-
-
For recent work on microscopic models describing the opposite limit of a smooth edge, see, e.g., S. Conti and G. Vignale, Phys. Rev. B 54, R14 309 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. R14309
-
-
Conti, S.1
Vignale, G.2
-
9
-
-
0001346329
-
-
Phys. Rev. BJ. H. Han, 56, 15 806 (1997).
-
(1997)
Phys. Rev. B
, vol.56
, pp. 15806
-
-
Han, J.1
-
12
-
-
0001080950
-
-
X. G. Wen, Int. J. Mod. Phys. B 6, 1711 (1992), and references cited therein.
-
(1992)
Int. J. Mod. Phys. B
, vol.6
, pp. 1711
-
-
Wen, X.1
-
13
-
-
1542763507
-
-
X. G. Wen, Adv. Phys. 44, 405 (1995).
-
(1995)
Adv. Phys.
, vol.44
, pp. 405
-
-
Wen, X.1
-
21
-
-
0642364803
-
-
For a recent review and additional references, see Ref. 6. Note that the effective 1D model describing a (Formula presented) QH edge is different from a generic TL model in that the left-going and right-going branches are nonequivalent because they represent chiral 1D electron gases that form the boundary of QH systems at different filling factor
-
J. Math. Phys.D. C. Mattis and E. H. Lieb, 6, 304 (1965).For a recent review and additional references, see Ref. 6. Note that the effective 1D model describing a (Formula presented) QH edge is different from a generic TL model in that the left-going and right-going branches are nonequivalent because they represent chiral 1D electron gases that form the boundary of QH systems at different filling factor.
-
(1965)
J. Math. Phys.
, vol.6
, pp. 304
-
-
Mattis, D.1
Lieb, E.2
-
22
-
-
0009391483
-
-
For a review, see, e.g., D. Pines and P. Nozières, The Theory of Quantum Liquids (Addison-Wesley, Reading, MA, 1989), Vol. I
-
The original work by V. P. Silinis published in Zh. Éksp. Teor. Fiz. 33, 495 (1957) [Sov. Phys. JETP 6, 387 (1958)].For a review, see, e.g., D. Pines and P. Nozières, The Theory of Quantum Liquids (Addison-Wesley, Reading, MA, 1989), Vol. I.
-
(1958)
Sov. Phys. JETP
, vol.6
, pp. 387
-
-
Silin, V.1
-
23
-
-
0542385528
-
-
U. Zülicke, R. Bluhm, V. A. Kostelecký, and A. H. MacDonald, Phys. Rev. B 55, 9800 (1997).
-
(1997)
Phys. Rev. B
, vol.55
, pp. 9800
-
-
Zülicke, U.1
Bluhm, R.2
Kostelecký, V.3
MacDonald, A.4
-
38
-
-
85037917262
-
-
U. Zülicke, Ph.D. thesis, Indiana University, 1998;U. Zülicke and A. H. MacDonald (unpublished).
-
-
-
Zülicke, U.1
MacDonald, A.2
|