메뉴 건너뛰기




Volumn 58, Issue 20, 1998, Pages 13778-13792

Observability of counterpropagating modes at fractional quantum Hall edges

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0037900795     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.58.13778     Document Type: Article
Times cited : (16)

References (47)
  • 4
    • 33749473931 scopus 로고
    • For a smooth confining potential (i.e., a potential that varies slowly on a microscopic length scale), electrostatics most dominantly determines the structure of the edge; see, for example, D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman, Phys. Rev. B 46, 4026 (1992).
    • (1992) Phys. Rev. B , vol.46 , pp. 4026
    • Chklovskii, D.1    Shklovskii, B.2    Glazman, L.3
  • 5
    • 0001320449 scopus 로고
    • The simple 1D models discussed in our work do not apply in this case. Most likely, the edge is smooth in most quantum Hall systems. The cleaved-edge overgrowth technique [L. N. Pfeiffer et. al Appl. Phys. Lett. 56, 1697 (1990)] offers one method which can be used to create QH samples with sharp edges.
    • (1990) Appl. Phys. Lett. , vol.56 , pp. 1697
    • Pfeiffer, L.1
  • 6
    • 0000130913 scopus 로고    scopus 로고
    • For recent work on microscopic models describing the opposite limit of a smooth edge, see, e.g., S. Conti and G. Vignale, Phys. Rev. B 54, R14 309 (1996).
    • (1996) Phys. Rev. B , vol.54 , pp. R14309
    • Conti, S.1    Vignale, G.2
  • 9
    • 0001346329 scopus 로고    scopus 로고
    • Phys. Rev. BJ. H. Han, 56, 15 806 (1997).
    • (1997) Phys. Rev. B , vol.56 , pp. 15806
    • Han, J.1
  • 12
    • 0001080950 scopus 로고
    • X. G. Wen, Int. J. Mod. Phys. B 6, 1711 (1992), and references cited therein.
    • (1992) Int. J. Mod. Phys. B , vol.6 , pp. 1711
    • Wen, X.1
  • 13
    • 1542763507 scopus 로고
    • X. G. Wen, Adv. Phys. 44, 405 (1995).
    • (1995) Adv. Phys. , vol.44 , pp. 405
    • Wen, X.1
  • 21
    • 0642364803 scopus 로고
    • For a recent review and additional references, see Ref. 6. Note that the effective 1D model describing a (Formula presented) QH edge is different from a generic TL model in that the left-going and right-going branches are nonequivalent because they represent chiral 1D electron gases that form the boundary of QH systems at different filling factor
    • J. Math. Phys.D. C. Mattis and E. H. Lieb, 6, 304 (1965).For a recent review and additional references, see Ref. 6. Note that the effective 1D model describing a (Formula presented) QH edge is different from a generic TL model in that the left-going and right-going branches are nonequivalent because they represent chiral 1D electron gases that form the boundary of QH systems at different filling factor.
    • (1965) J. Math. Phys. , vol.6 , pp. 304
    • Mattis, D.1    Lieb, E.2
  • 22
    • 0009391483 scopus 로고
    • For a review, see, e.g., D. Pines and P. Nozières, The Theory of Quantum Liquids (Addison-Wesley, Reading, MA, 1989), Vol. I
    • The original work by V. P. Silinis published in Zh. Éksp. Teor. Fiz. 33, 495 (1957) [Sov. Phys. JETP 6, 387 (1958)].For a review, see, e.g., D. Pines and P. Nozières, The Theory of Quantum Liquids (Addison-Wesley, Reading, MA, 1989), Vol. I.
    • (1958) Sov. Phys. JETP , vol.6 , pp. 387
    • Silin, V.1
  • 38
    • 85037917262 scopus 로고    scopus 로고
    • U. Zülicke, Ph.D. thesis, Indiana University, 1998;U. Zülicke and A. H. MacDonald (unpublished).
    • Zülicke, U.1    MacDonald, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.