-
1
-
-
0001642365
-
Upper semicontinuity of attractors for small random perturbations of dynamical systems
-
T. CARABALLO, J. A. LANGA and J. ROBINSON. Upper semicontinuity of attractors for small random perturbations of dynamical systems. Comm. Partial Differential Equations 23, 1557-1581 (1998).
-
(1998)
Comm. Partial Differential Equations
, vol.23
, pp. 1557-1581
-
-
Caraballo, T.1
Langa, J.A.2
Robinson, J.3
-
2
-
-
0043238612
-
On the upper semicontinuity of cocycle attractors for nonautonomous and random dynamical systems
-
T. CARABALLO and J. A. LANGA, On the upper semicontinuity of cocycle attractors for nonautonomous and random dynamical systems. Dynamics Continuous, Discrete Impulsive Systems 10 (4), 491-514 (2003).
-
(2003)
Dynamics Continuous, Discrete Impulsive Systems
, vol.10
, Issue.4
, pp. 491-514
-
-
Caraballo, T.1
Langa, J.A.2
-
3
-
-
20244387502
-
Dimension of attractors of nonautonomous reaction-diffusion equations
-
To appear
-
T. CARABALLO, J. A. LANGA and J. VALERO. Dimension of attractors of nonautonomous reaction-diffusion equations. ANZIAM journal. To appear.
-
ANZIAM Journal
-
-
Caraballo, T.1
Langa, J.A.2
Valero, J.3
-
4
-
-
0038058212
-
The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems
-
D. N. CHEBAN, P. E. KLOEDEN and B. SCHMALFUSS, The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems. Nonlinear Dynamics and Systems Theory 2 (2). 9-28 (2002).
-
(2002)
Nonlinear Dynamics and Systems Theory
, vol.2
, Issue.2
, pp. 9-28
-
-
Cheban, D.N.1
Kloeden, P.E.2
Schmalfuss, B.3
-
5
-
-
0000633043
-
A Hausdorff dimension estimate for kernel sections of non-autonomous evolution equations
-
V. CHEPYZHOV and M. VISHIK, A Hausdorff dimension estimate for kernel sections of non-autonomous evolution equations. Indiana Univ. Math. J. 42, 1057-1076 (1993).
-
(1993)
Indiana Univ. Math. J.
, vol.42
, pp. 1057-1076
-
-
Chepyzhov, V.1
Vishik, M.2
-
7
-
-
0002449201
-
Sur le comportement global des solutions non-stationnaires des equations de Navier-Stokes en dimension 2
-
C. FOIAS et G. PRODI, Sur le comportement global des solutions non-stationnaires des equations de Navier-Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova 39, 1-34 (1967).
-
(1967)
Rend. Sem. Mat. Univ. Padova
, vol.39
, pp. 1-34
-
-
Foias, C.1
Prodi, G.2
-
8
-
-
0003293929
-
Asymptotic behavior of dissipative systems
-
Providence
-
J. HALE, Asymptotic Behavior of Dissipative Systems. Math. Surveys Monographs, Providence 1988.
-
(1988)
Math. Surveys Monographs
-
-
Hale, J.1
-
9
-
-
0031527178
-
Nonautonomous systems, cocycle attractors and variable time-step discretization
-
P. KLOEDEN and B. SCHMALFUSS, Nonautonomous systems, cocycle attractors and variable time-step discretization. Numer. Algorithms 14, 141-152 (1997).
-
(1997)
Numer. Algorithms
, vol.14
, pp. 141-152
-
-
Kloeden, P.1
Schmalfuss, B.2
-
11
-
-
0043238609
-
Determining asymptotic behaviour from the dynamics on attracting sets
-
J. A. LANGA and J. C. ROBINSON, Determining asymptotic behaviour from the dynamics on attracting sets. J. Dyn. Differential and Equations 11, 2 319-331 (1999).
-
(1999)
J. Dyn. Differential and Equations
, vol.11
, Issue.2
, pp. 319-331
-
-
Langa, J.A.1
Robinson, J.C.2
-
12
-
-
0035402764
-
A finite number of point observations which determine a nonautonomous fluid flow
-
J. A. LANGA and J. C. ROBINSON, A finite number of point observations which determine a nonautonomous fluid flow, Nonlinearity 14, 673-682 (2001).
-
(2001)
Nonlinearity
, vol.14
, pp. 673-682
-
-
Langa, J.A.1
Robinson, J.C.2
-
15
-
-
84968510092
-
Nonautonomous differential equations and topological dynamics I, II
-
G. SELL, Nonautonomous differential equations and topological dynamics I, II. Amer. Math. Soc. 127, 241-262, 263-283 (1967).
-
(1967)
Amer. Math. Soc.
, vol.127
, pp. 241-262
-
-
Sell, G.1
|