-
2
-
-
0000633043
-
A hausdorff dimension estimate for kernel sections of non-autonomous evolution equations
-
Chepyzhov V and Vishik M 1993 A Hausdorff dimension estimate for kernel sections of non-autonomous evolution equations Indiana Univ. Math. J. 42 1057-76
-
(1993)
Indiana Univ. Math. J.
, vol.42
, pp. 1057-1076
-
-
Chepyzhov, V.1
Vishik, M.2
-
3
-
-
0001530660
-
Attractors of non-autonomous dynamical systems and their dimension
-
-1994 Attractors of non-autonomous dynamical systems and their dimension J. Math. Pure. Appl. 73 279-333
-
(1994)
J. Math. Pure. Appl.
, vol.73
, pp. 279-333
-
-
-
4
-
-
0001697489
-
Gevrey regularity of random attractors for stochastic reaction-diffusion equations
-
Chueshov I D 2000 Gevrey regularity of random attractors for stochastic reaction-diffusion equations Random Operators Stock. Eq. 8 143-62
-
(2000)
Random Operators Stock. Eq.
, vol.8
, pp. 143-162
-
-
Chueshov, I.D.1
-
5
-
-
0039459032
-
Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems
-
Cockburn B, Jones D A and Titi E S 1997 Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems Math. Comput. 66 1073-87
-
(1997)
Math. Comput.
, vol.66
, pp. 1073-1087
-
-
Cockburn, B.1
Jones, D.A.2
Titi, E.S.3
-
6
-
-
84990581938
-
Global lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractor for 2D Navier-Stokes equation
-
Constantin P and Foias C 1985 Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractor for 2D Navier-Stokes equation Commun. Pure Appl. Math. 38 1-27
-
(1985)
Commun. Pure Appl. Math.
, vol.38
, pp. 1-27
-
-
Constantin, P.1
Foias, C.2
-
7
-
-
0003545358
-
-
Chicago, IL: University of Chicago Press
-
-1988 Navier-Stokes Equations (Chicago, IL: University of Chicago Press)
-
(1988)
Navier-Stokes Equations
-
-
-
10
-
-
0032325270
-
Hausdorff dimension of a random invariant set
-
Debussche A 1998 Hausdorff dimension of a random invariant set J. Math. Pure. Appl. 77 967-88
-
(1998)
J. Math. Pure. Appl.
, vol.77
, pp. 967-988
-
-
Debussche, A.1
-
14
-
-
0002449201
-
Sur le comportement global des solutions non stationnaires des équations de navier-stokes en dimension 2
-
Foias C and Prodi G 1967 Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en dimension 2 Rend. Sem. Mat. Univ. Padova 39 1-34
-
(1967)
Rend. Sem. Mat. Univ. Padova
, vol.39
, pp. 1-34
-
-
Foias, C.1
Prodi, G.2
-
15
-
-
0000640733
-
Inertial manifolds for nonlinear evolution equations
-
Foias C, Sell G R and Temam R 1988 Inertial manifolds for nonlinear evolution equations J. Diff. Eq. 73 309-53
-
(1988)
J. Diff. Eq.
, vol.73
, pp. 309-353
-
-
Foias, C.1
Sell, G.R.2
Temam, R.3
-
16
-
-
84966204481
-
Determination of the solutions of the Navier-Stokes equations by a set of nodal values
-
Foias C and Temam R 1984 Determination of the solutions of the Navier-Stokes equations by a set of nodal values Math. Comput. 43 117-33
-
(1984)
Math. Comput.
, vol.43
, pp. 117-133
-
-
Foias, C.1
Temam, R.2
-
17
-
-
33746636159
-
Gevrey class regularity for the solutions of the Navier-Stokes equations
-
-1989 Gevrey class regularity for the solutions of the Navier-Stokes equations J. Funct. Anal. 87 359-69
-
(1989)
J. Funct. Anal.
, vol.87
, pp. 359-369
-
-
-
18
-
-
0003169927
-
Finite fractal dimensions and Hölder-Lipschitz parametrization
-
Foias C and Olson E J 1996 Finite fractal dimensions and Hölder-Lipschitz parametrization Indiana Univ. Math. J. 45 603-16
-
(1996)
Indiana Univ. Math. J.
, vol.45
, pp. 603-616
-
-
Foias, C.1
Olson, E.J.2
-
20
-
-
0347572322
-
Parametrising the attractor of the two-dimensional Navier-Stokes equations with a finite number of nodal values
-
Friz P K and Robinson J C 2001 Parametrising the attractor of the two-dimensional Navier-Stokes equations with a finite number of nodal values Physica D 148 201-20
-
(2001)
Physica D
, vol.148
, pp. 201-220
-
-
Friz, P.K.1
Robinson, J.C.2
-
22
-
-
0033196607
-
Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces
-
Hunt B R and Kaloshin V Y 1999 Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces Nonlinearity 12 1263-75
-
(1999)
Nonlinearity
, vol.12
, pp. 1263-1275
-
-
Hunt, B.R.1
Kaloshin, V.Y.2
-
23
-
-
84967728280
-
Prevalence: A translation-invariant almost every for infinite dimensional spaces
-
Hunt B R, Sauer T and Yorke J A 1992 Prevalence: a translation-invariant almost every for infinite dimensional spaces Bull Am. Math. Soc. 27 217-38
-
(1992)
Bull Am. Math. Soc.
, vol.27
, pp. 217-238
-
-
Hunt, B.R.1
Sauer, T.2
Yorke, J.A.3
-
24
-
-
84967782914
-
Prevalence: An addendum
-
-1993 Prevalence: an addendum Bull. Am. Math. Soc. 28 306-7
-
(1993)
Bull. Am. Math. Soc.
, vol.28
, pp. 306-307
-
-
-
25
-
-
0031527178
-
Nonautonomous systems, cocycle attractors and variable time-step discretization
-
Kloeden P and Schmalfuß B 1997 Nonautonomous systems, cocycle attractors and variable time-step discretization Numer. Algorithms 14 141-52
-
(1997)
Numer. Algorithms
, vol.14
, pp. 141-152
-
-
Kloeden, P.1
Schmalfuß, B.2
-
28
-
-
0000242980
-
Global attractors: Topology and finite-dimensional dynamics
-
Robinson J C 1999 Global attractors: topology and finite-dimensional dynamics J. Dynam. Diff. Eq. 11 557-81
-
(1999)
J. Dynam. Diff. Eq.
, vol.11
, pp. 557-581
-
-
Robinson, J.C.1
-
29
-
-
57249092642
-
A rigorous treatment of experimental observations for the two-dimensional Navier-Stokes equations
-
-2001a A rigorous treatment of experimental observations for the two-dimensional Navier-Stokes equations Proc. R. Soc. A 457 1007-20
-
(2001)
Proc. R. Soc. A
, vol.457
, pp. 1007-1020
-
-
-
32
-
-
0037867532
-
Attractors for the non-autonomous dynamical systems
-
ed B Fielder, K Gröger and J Sprekels (Singapore: World Scientific)
-
-2000 Attractors for the non-autonomous dynamical systems Proc. Equadiff 99 (Berlin) ed B Fielder, K Gröger and J Sprekels (Singapore: World Scientific) pp 684-9
-
(2000)
Proc. Equadiff 99 (Berlin)
, pp. 684-689
-
-
|