메뉴 건너뛰기




Volumn 168, Issue 2, 2001, Pages 433-444

A Comparison of Transparent Boundary Conditions for the Fresnel Equation

Author keywords

[No Author keywords available]

Indexed keywords

CONDITION; FRESNEL EQUATION; PROPAGATION STEP; SCHMIDT; SIMPLE MODIFICATIONS; STEP LENGTH; TRANSPARENT BOUNDARY CONDITIONS; UNCONDITIONALLY STABLE;

EID: 0037690905     PISSN: 00219991     EISSN: None     Source Type: Journal    
DOI: 10.1006/jcph.2001.6708     Document Type: Article
Times cited : (39)

References (22)
  • 1
    • 0001262382 scopus 로고
    • Implementation of transparent boundaries for numerical solution of the Schrodinger equation
    • Baskakov V. A., Popov A. V. Implementation of transparent boundaries for numerical solution of the Schrodinger equation. Wave Motion. 14:1991;121.
    • (1991) Wave Motion , vol.14 , pp. 121
    • Baskakov, V.A.1    Popov, A.V.2
  • 2
    • 0040601880 scopus 로고    scopus 로고
    • An FFT-based non-local boundary condition for the parabolic equation
    • edited by J. S. PapadakisCrete Univ. Press, Heraklion
    • M. E. Mayfield and D. J. Thomson, An FFT-based non-local boundary condition for the parabolic equation, in 3rd European Conference on Underwater Acoustics, edited by J. S. PapadakisCrete Univ. Press, Heraklion, 1996, Vol. 1, pp. 237-242.
    • (1996) In 3rd European Conference on Underwater Acoustics , vol.1 , pp. 237-242
    • Mayfield, M.E.1    Thomson, D.J.2
  • 3
    • 0030283759 scopus 로고    scopus 로고
    • Accurate modeling of transparent boundaries in quasi-optics
    • Popov A. V. Accurate modeling of transparent boundaries in quasi-optics. Radio Sci. 31:1996;1781.
    • (1996) Radio Sci. , vol.31 , pp. 1781
    • Popov, A.V.1
  • 4
    • 0002145516 scopus 로고    scopus 로고
    • Impedance formulation of the bottom boundary condition for the parabolic equation model in underwater acoustics
    • in J. A. Davis, et al.
    • J. S. Papadakis, Impedance formulation of the bottom boundary condition for the parabolic equation model in underwater acoustics, in J. A. Davis, et al., op cit, p, 83.
    • Radio Sci. , pp. 83
    • Papadakis, J.S.1
  • 5
    • 0344475591 scopus 로고
    • A non-reflecting boundary condition for use in PE calculations of sound propagation in air
    • Mayfield M. E., Thomson D. J. A non-reflecting boundary condition for use in PE calculations of sound propagation in air. J. Acoust. Soc. Am. 92:1992;2406.
    • (1992) J. Acoust. Soc. Am. , vol.92 , pp. 2406
    • Mayfield, M.E.1    Thomson, D.J.2
  • 6
    • 0001865630 scopus 로고
    • Exact, nonreflecting boundary conditions for parabolic-type approximations in underwater acoustics
    • Papadakis J. S. Exact, nonreflecting boundary conditions for parabolic-type approximations in underwater acoustics. J. Comput. Acoust. 2:1994;83.
    • (1994) J. Comput. Acoust. , vol.2 , pp. 83
    • Papadakis, J.S.1
  • 9
    • 0031632570 scopus 로고    scopus 로고
    • Numerically absorbing boundary conditions for quantum evolution equations
    • Arnold A. Numerically absorbing boundary conditions for quantum evolution equations. VLSI Design. 6:1998;313.
    • (1998) VLSI Design , vol.6 , pp. 313
    • Arnold, A.1
  • 10
    • 0000322772 scopus 로고
    • On absorbing boundary conditions for quantum transport equations
    • Arnold A. On absorbing boundary conditions for quantum transport equations. Math. Modell. Numer. Anal. 28:1994;853.
    • (1994) Math. Modell. Numer. Anal. , vol.28 , pp. 853
    • Arnold, A.1
  • 11
    • 0011217467 scopus 로고    scopus 로고
    • Discrete transparent boundary conditions for wide angle parabolic equations in underwater acoustics
    • Arnold A., Ehrhardt M. Discrete transparent boundary conditions for wide angle parabolic equations in underwater acoustics. J. Comput. Phys. 145:1998;611.
    • (1998) J. Comput. Phys. , vol.145 , pp. 611
    • Arnold, A.1    Ehrhardt, M.2
  • 12
    • 0010945360 scopus 로고
    • Discrete transparent boundary condition for the numerical solution of Fresnel's equation
    • Schmidt F., Deuflhard P. Discrete transparent boundary condition for the numerical solution of Fresnel's equation. Comput. Math. Appl. 29:1995;53.
    • (1995) Comput. Math. Appl. , vol.29 , pp. 53
    • Schmidt, F.1    Deuflhard, P.2
  • 13
    • 0031161655 scopus 로고    scopus 로고
    • Analysis of boundary conditions for the Fresnel equation
    • Schmidt F., Yevick D. Analysis of boundary conditions for the Fresnel equation. J. Comput. Phys. 134:1997;96.
    • (1997) J. Comput. Phys. , vol.134 , pp. 96
    • Schmidt, F.1    Yevick, D.2
  • 14
    • 0033032496 scopus 로고    scopus 로고
    • Nonlocal boundary conditions for finite-difference parabolic equation solvers
    • Yevick D., Thomson D. J. Nonlocal boundary conditions for finite-difference parabolic equation solvers. J. Acoust. Soc. Am. 106:1999;143.
    • (1999) J. Acoust. Soc. Am. , vol.106 , pp. 143
    • Yevick, D.1    Thomson, D.J.2
  • 15
    • 0038367006 scopus 로고    scopus 로고
    • Construction of discrete transparent boundary conditions for Schrödinger-type equation
    • Schmidt F. Construction of discrete transparent boundary conditions for Schrödinger-type equation. Surv. Math. Ind. 9:1999;87.
    • (1999) Surv. Math. Ind. , vol.9 , pp. 87
    • Schmidt, F.1
  • 16
    • 0026616466 scopus 로고
    • A new method for a realistic treatment of the sea bottom in the parabolic approximation
    • Papadakis J. S., Taroudakis M. I., Papadakis P. J., Mayfield B. A new method for a realistic treatment of the sea bottom in the parabolic approximation. J. Acoust. Soc. Am. 92:1992;2030.
    • (1992) J. Acoust. Soc. Am. , vol.92 , pp. 2030
    • Papadakis, J.S.1    Taroudakis, M.I.2    Papadakis, P.J.3    Mayfield, B.4
  • 17
    • 0001347206 scopus 로고
    • An exact radiation condition for use with the a posteriori PE method
    • Thomson D. J., Mayfield M. E. An exact radiation condition for use with the a posteriori PE method. J. Comput. Acoust. 2:1994;113.
    • (1994) J. Comput. Acoust. , vol.2 , pp. 113
    • Thomson, D.J.1    Mayfield, M.E.2
  • 19
    • 0027341189 scopus 로고
    • A split-step Padé solution for the parabolic equation method
    • Collins M. D. A split-step Padé solution for the parabolic equation method. J. Acoust. Soc. Am. 93:1993;1736.
    • (1993) J. Acoust. Soc. Am. , vol.93 , pp. 1736
    • Collins, M.D.1
  • 22
    • 0030556699 scopus 로고    scopus 로고
    • A sloping-boundary condition for efficient PE calculations in range-dependent acoustic media
    • Brooke G. H., Thomson D. J., Wort P. M. A sloping-boundary condition for efficient PE calculations in range-dependent acoustic media. J. Comput. Acoust. 4:1996;11.
    • (1996) J. Comput. Acoust. , vol.4 , pp. 11
    • Brooke, G.H.1    Thomson, D.J.2    Wort, P.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.