-
1
-
-
0001723371
-
-
E. Jagoutz et al., Proc. Lunar Planet. Sci. Conf. X, 2031 (1979); J. W. Morgan, G. A. Wandless, R. K. Petrie, A. J. Irving, Tectonophysics 75, 47 (1981); J. W. Morgan, J. Geophys. Res. 91, 12375 (1986).
-
(1979)
Proc. Lunar Planet. Sci. Conf.
, vol.10
, pp. 2031
-
-
Jagoutz, E.1
-
2
-
-
0019391904
-
-
E. Jagoutz et al., Proc. Lunar Planet. Sci. Conf. X, 2031 (1979); J. W. Morgan, G. A. Wandless, R. K. Petrie, A. J. Irving, Tectonophysics 75, 47 (1981); J. W. Morgan, J. Geophys. Res. 91, 12375 (1986).
-
(1981)
Tectonophysics
, vol.75
, pp. 47
-
-
Morgan, J.W.1
Wandless, G.A.2
Petrie, R.K.3
Irving, A.J.4
-
3
-
-
0001046107
-
-
E. Jagoutz et al., Proc. Lunar Planet. Sci. Conf. X, 2031 (1979); J. W. Morgan, G. A. Wandless, R. K. Petrie, A. J. Irving, Tectonophysics 75, 47 (1981); J. W. Morgan, J. Geophys. Res. 91, 12375 (1986).
-
(1986)
J. Geophys. Res.
, vol.91
, pp. 12375
-
-
Morgan, J.W.1
-
5
-
-
0001057988
-
-
K. Kimura, R. S. Lewis, E. Anders, ibid. 38, 683 (1974); C.-L. Chou, Proc. Lunar Planet. Sci. Cont. IX, 219 (1978).
-
(1974)
Geochim. Cosmochim. Acta
, vol.38
, pp. 683
-
-
Kimura, K.1
Lewis, R.S.2
Anders, E.3
-
7
-
-
0026278519
-
-
V. R. Murthy, Science 253, 303 (1991); D. Walker, L. Norby, J. H. Jones, ibid. 262, 1858 (1993); J. Li and C. B. Agee, Nature 381, 686 (1996); K. Righter and M. J. Drake, Earth Planet. Sci. Lett. 146, 541 (1997).
-
(1991)
Science
, vol.253
, pp. 303
-
-
Murthy, V.R.1
-
8
-
-
0027788217
-
-
V. R. Murthy, Science 253, 303 (1991); D. Walker, L. Norby, J. H. Jones, ibid. 262, 1858 (1993); J. Li and C. B. Agee, Nature 381, 686 (1996); K. Righter and M. J. Drake, Earth Planet. Sci. Lett. 146, 541 (1997).
-
(1993)
Science
, vol.262
, pp. 1858
-
-
Walker, D.1
Norby, L.2
Jones, J.H.3
-
9
-
-
0030159159
-
-
V. R. Murthy, Science 253, 303 (1991); D. Walker, L. Norby, J. H. Jones, ibid. 262, 1858 (1993); J. Li and C. B. Agee, Nature 381, 686 (1996); K. Righter and M. J. Drake, Earth Planet. Sci. Lett. 146, 541 (1997).
-
(1996)
Nature
, vol.381
, pp. 686
-
-
Li, J.1
Agee, C.B.2
-
10
-
-
0030862966
-
-
V. R. Murthy, Science 253, 303 (1991); D. Walker, L. Norby, J. H. Jones, ibid. 262, 1858 (1993); J. Li and C. B. Agee, Nature 381, 686 (1996); K. Righter and M. J. Drake, Earth Planet. Sci. Lett. 146, 541 (1997).
-
(1997)
Earth Planet. Sci. Lett.
, vol.146
, pp. 541
-
-
Righter, K.1
Drake, M.J.2
-
13
-
-
0000259166
-
-
J. P. Lorand and L. Pattou, J. Conf. Abstr. 1, 369 (1996); G. Schmidt and J. E. Snow, in Seventh Annual V. M. Goldschmidt Conference (LPI Contribution No. 921, Lunar and Planetary Institute, Houston, TX, 1997), pp. 186-187.
-
(1996)
J. Conf. Abstr.
, vol.1
, pp. 369
-
-
Lorand, J.P.1
Pattou, L.2
-
14
-
-
1842376884
-
-
LPI Contribution No. 921, Lunar and Planetary Institute, Houston, TX
-
J. P. Lorand and L. Pattou, J. Conf. Abstr. 1, 369 (1996); G. Schmidt and J. E. Snow, in Seventh Annual V. M. Goldschmidt Conference (LPI Contribution No. 921, Lunar and Planetary Institute, Houston, TX, 1997), pp. 186-187.
-
(1997)
Seventh Annual V. M. Goldschmidt Conference
, pp. 186-187
-
-
Schmidt, G.1
Snow, J.E.2
-
16
-
-
1842338725
-
-
note
-
198Pt and desilicificated with HF/HCI, they were further digested in sealed Carius
-
-
-
-
17
-
-
0000232209
-
-
Tubes [S. B. Shirey and R. J. Walker, Anal. Chem. 67, 2136 (1995)] for ∼48 hours at 230°C. After dissolution, the PGEs were isolated from one another and the bulk-rock matrix by anion-exchange chromatography [M. Rehkämper and A. N. Halliday, Talanta 44, 663 (1997)]. The pure PGE fractions were then analyzed with a Plasma 54 multiple-collector inductively coupled plasma mass spectrometer [A. N. Halliday et al., Int. J. Mass Spectrom. Ion Processes 146/147, 21 (1995)]. Multiple analysis of iceland basalt sample BTHO and Alexo komatiite sample KAL-1 demonstrate that our techniques achieve external reproducibilities of ∼1.5 to 9% for the PGEs in the concentration range from parts per billion to parts per trillion. Duplicate analysis of two peridotite samples (OMX-8 and C235A) indicate a somewhat lower reproducibility (≤ 15%), probably owing to the heterogeneity of the coarse-grained rocks. The PGE ratios of the duplicates, however, were identical to within 1 to 8%. Blanks for the Cameroon Line samples, digested with conventional Carius Tubes, were <10 pg/g for Ru, Pd, and Ir and 100 to 200 pg/g for Pt. Northern Tanzanian xenoliths were digested with the use of a modified Carius Tube design, and this technique achieves blanks of <15 pg/g for all analyzed PGEs (M. Rehkämper, A. N. Halliday, R. F. Wentz, Fres. J. Anal. Chem., in press).
-
(1995)
Anal. Chem.
, vol.67
, pp. 2136
-
-
Shirey, S.B.1
Walker, R.J.2
-
18
-
-
0342940791
-
-
Tubes [S. B. Shirey and R. J. Walker, Anal. Chem. 67, 2136 (1995)] for ∼48 hours at 230°C. After dissolution, the PGEs were isolated from one another and the bulk-rock matrix by anion-exchange chromatography [M. Rehkämper and A. N. Halliday, Talanta 44, 663 (1997)]. The pure PGE fractions were then analyzed with a Plasma 54 multiple-collector inductively coupled plasma mass spectrometer [A. N. Halliday et al., Int. J. Mass Spectrom. Ion Processes 146/147, 21 (1995)]. Multiple analysis of iceland basalt sample BTHO and Alexo komatiite sample KAL-1 demonstrate that our techniques achieve external reproducibilities of ∼1.5 to 9% for the PGEs in the concentration range from parts per billion to parts per trillion. Duplicate analysis of two peridotite samples (OMX-8 and C235A) indicate a somewhat lower reproducibility (≤ 15%), probably owing to the heterogeneity of the coarse-grained rocks. The PGE ratios of the duplicates, however, were identical to within 1 to 8%. Blanks for the Cameroon Line samples, digested with conventional Carius Tubes, were <10 pg/g for Ru, Pd, and Ir and 100 to 200 pg/g for Pt. Northern Tanzanian xenoliths were digested with the use of a modified Carius Tube design, and this technique achieves blanks of <15 pg/g for all analyzed PGEs (M. Rehkämper, A. N. Halliday, R. F. Wentz, Fres. J. Anal. Chem., in press).
-
(1997)
Talanta
, vol.44
, pp. 663
-
-
Rehkämper, M.1
Halliday, A.N.2
-
19
-
-
58149211853
-
-
Tubes [S. B. Shirey and R. J. Walker, Anal. Chem. 67, 2136 (1995)] for ∼48 hours at 230°C. After dissolution, the PGEs were isolated from one another and the bulk-rock matrix by anion-exchange chromatography [M. Rehkämper and A. N. Halliday, Talanta 44, 663 (1997)]. The pure PGE fractions were then analyzed with a Plasma 54 multiple-collector inductively coupled plasma mass spectrometer [A. N. Halliday et al., Int. J. Mass Spectrom. Ion Processes 146/147, 21 (1995)]. Multiple analysis of iceland basalt sample BTHO and Alexo komatiite sample KAL-1 demonstrate that our techniques achieve external reproducibilities of ∼1.5 to 9% for the PGEs in the concentration range from parts per billion to parts per trillion. Duplicate analysis of two peridotite samples (OMX-8 and C235A) indicate a somewhat lower reproducibility (≤ 15%), probably owing to the heterogeneity of the coarse-grained rocks. The PGE ratios of the duplicates, however, were identical to within 1 to 8%. Blanks for the Cameroon Line samples, digested with conventional Carius Tubes, were <10 pg/g for Ru, Pd, and Ir and 100 to 200 pg/g for Pt. Northern Tanzanian xenoliths were digested with the use of a modified Carius Tube design, and this technique achieves blanks of <15 pg/g for all analyzed PGEs (M. Rehkämper, A. N. Halliday, R. F. Wentz, Fres. J. Anal. Chem., in press).
-
(1995)
Int. J. Mass Spectrom. Ion Processes
, vol.146-147
, pp. 21
-
-
Halliday, A.N.1
-
20
-
-
23544472298
-
-
in press
-
Tubes [S. B. Shirey and R. J. Walker, Anal. Chem. 67, 2136 (1995)] for ∼48 hours at 230°C. After dissolution, the PGEs were isolated from one another and the bulk-rock matrix by anion-exchange chromatography [M. Rehkämper and A. N. Halliday, Talanta 44, 663 (1997)]. The pure PGE fractions were then analyzed with a Plasma 54 multiple-collector inductively coupled plasma mass spectrometer [A. N. Halliday et al., Int. J. Mass Spectrom. Ion Processes 146/147, 21 (1995)]. Multiple analysis of iceland basalt sample BTHO and Alexo komatiite sample KAL-1 demonstrate that our techniques achieve external reproducibilities of ∼1.5 to 9% for the PGEs in the concentration range from parts per billion to parts per trillion. Duplicate analysis of two peridotite samples (OMX-8 and C235A) indicate a somewhat lower reproducibility (≤ 15%), probably owing to the heterogeneity of the coarse-grained rocks. The PGE ratios of the duplicates, however, were identical to within 1 to 8%. Blanks for the Cameroon Line samples, digested with conventional Carius Tubes, were <10 pg/g for Ru, Pd, and Ir and 100 to 200 pg/g for Pt. Northern Tanzanian xenoliths were digested with the use of a modified Carius Tube design, and this technique achieves blanks of <15 pg/g for all analyzed PGEs (M. Rehkämper, A. N. Halliday, R. F. Wentz, Fres. J. Anal. Chem., in press).
-
Fres. J. Anal. Chem.
-
-
Rehkämper, M.1
Halliday, A.N.2
Wentz, R.F.3
-
22
-
-
84990750578
-
-
Clarendon, Oxford, UK
-
L. Cahen et al., The Geochronology and Evolution of Africa (Clarendon, Oxford, UK, 1984); S. F. Toteu, A. Michard, J. M. Bertrand, G. Rocci, Precambrian Res. 37, 71 (1987).
-
(1984)
The Geochronology and Evolution of Africa
-
-
Cahen, L.1
-
23
-
-
0023523738
-
-
L. Cahen et al., The Geochronology and Evolution of Africa (Clarendon, Oxford, UK, 1984); S. F. Toteu, A. Michard, J. M. Bertrand, G. Rocci, Precambrian Res. 37, 71 (1987).
-
(1987)
Precambrian Res.
, vol.37
, pp. 71
-
-
Toteu, S.F.1
Michard, A.2
Bertrand, J.M.3
Rocci, G.4
-
24
-
-
0000503205
-
-
J. B. Dawson, D. G. Powell, A. M. Reid, J. Petrol. 11, 519 (1970); R. Hutchison and J. B. Dawson, Earth Planet. Sci. Lett. 9, 87 (1970); W. I. Ridley and J. B. Dawson, in Physics and Chemistry of the Earth, L. H. Ahrens, J. B. Dawson, A. R. Duncan, A. J. Erlank, Eds. (Pergamon, New York, 1975), pp. 559-569.
-
(1970)
J. Petrol.
, vol.11
, pp. 519
-
-
Dawson, J.B.1
Powell, D.G.2
Reid, A.M.3
-
25
-
-
0010378412
-
-
J. B. Dawson, D. G. Powell, A. M. Reid, J. Petrol. 11, 519 (1970); R. Hutchison and J. B. Dawson, Earth Planet. Sci. Lett. 9, 87 (1970); W. I. Ridley and J. B. Dawson, in Physics and Chemistry of the Earth, L. H. Ahrens, J. B. Dawson, A. R. Duncan, A. J. Erlank, Eds. (Pergamon, New York, 1975), pp. 559-569.
-
(1970)
Earth Planet. Sci. Lett.
, vol.9
, pp. 87
-
-
Hutchison, R.1
Dawson, J.B.2
-
26
-
-
0010412006
-
-
L. H. Ahrens, J. B. Dawson, A. R. Duncan, A. J. Erlank, Eds. Pergamon, New York
-
J. B. Dawson, D. G. Powell, A. M. Reid, J. Petrol. 11, 519 (1970); R. Hutchison and J. B. Dawson, Earth Planet. Sci. Lett. 9, 87 (1970); W. I. Ridley and J. B. Dawson, in Physics and Chemistry of the Earth, L. H. Ahrens, J. B. Dawson, A. R. Duncan, A. J. Erlank, Eds. (Pergamon, New York, 1975), pp. 559-569.
-
(1975)
Physics and Chemistry of the Earth
, pp. 559-569
-
-
Ridley, W.I.1
Dawson, J.B.2
-
27
-
-
0000298862
-
-
Araxá, Brazil, 18 June to 4 July 1991, H. O. A. Meyer and O. Leonardos, Eds. Companhia de Pesquisa de Recursos Minerais, Rio de Janeiro, Brazil
-
R. L. Rudnick, W. F. McDonough, A. Orpin, in Proceedings of the Fifth International Kimberlite Conference, Araxá, Brazil, 18 June to 4 July 1991, H. O. A. Meyer and O. Leonardos, Eds. (Companhia de Pesquisa de Recursos Minerais, Rio de Janeiro, Brazil, 1991), vol. 1, pp. 336-353.
-
(1991)
Proceedings of the Fifth International Kimberlite Conference
, vol.1
, pp. 336-353
-
-
Rudnick, R.L.1
McDonough, W.F.2
Orpin, A.3
-
29
-
-
0023490301
-
-
P. H. Nixon, Ed. Wiley, Chichester, UK
-
P. H. Nixon, in Mantle Xenoliths, P. H. Nixon, Ed. (Wiley, Chichester, UK, 1987), pp. 215-240.
-
(1987)
Mantle Xenoliths
, pp. 215-240
-
-
Nixon, P.H.1
-
32
-
-
0023509849
-
-
M. A. Menzies and C. J. Hawkesworth, Eds. Academic Press, London
-
J. B. Dawson, in Mantle Metasomatism, M. A. Menzies and C. J. Hawkesworth, Eds. (Academic Press, London, 1987), pp. 125-144.
-
(1987)
Mantle Metasomatism
, pp. 125-144
-
-
Dawson, J.B.1
-
33
-
-
0019910587
-
-
N. J. Page, J. S. Pallister, M. A. Brown, J. D. Smewing, J. Haffty, Can. Mineral. 20, 537 (1982); N. J. Page and R. W. Talkington, ibid. 22, 137 (1984); N. J. Page, T. Engin, D. A. Singer, J. Haffty, Econ. Geol. 79, 177 (1984); A. Cocherie, T. Augé, G. Meyer, Chem. Geol. 77, 27 (1989); B. McElduff and E. F. Stumpfl, Mineral. Petrol. 42, 211 (1990); M. Leblanc, Econ. Geol. 90, 2028 (1995); J. Vuollo et al., ibid., p. 445.
-
(1982)
Can. Mineral.
, vol.20
, pp. 537
-
-
Page, N.J.1
Pallister, J.S.2
Brown, M.A.3
Smewing, J.D.4
Haffty, J.5
-
34
-
-
0021372414
-
-
N. J. Page, J. S. Pallister, M. A. Brown, J. D. Smewing, J. Haffty, Can. Mineral. 20, 537 (1982); N. J. Page and R. W. Talkington, ibid. 22, 137 (1984); N. J. Page, T. Engin, D. A. Singer, J. Haffty, Econ. Geol. 79, 177 (1984); A. Cocherie, T. Augé, G. Meyer, Chem. Geol. 77, 27 (1989); B. McElduff and E. F. Stumpfl, Mineral. Petrol. 42, 211 (1990); M. Leblanc, Econ. Geol. 90, 2028 (1995); J. Vuollo et al., ibid., p. 445.
-
(1984)
Can. Mineral.
, vol.22
, pp. 137
-
-
Page, N.J.1
Talkington, R.W.2
-
35
-
-
0021335720
-
-
N. J. Page, J. S. Pallister, M. A. Brown, J. D. Smewing, J. Haffty, Can. Mineral. 20, 537 (1982); N. J. Page and R. W. Talkington, ibid. 22, 137 (1984); N. J. Page, T. Engin, D. A. Singer, J. Haffty, Econ. Geol. 79, 177 (1984); A. Cocherie, T. Augé, G. Meyer, Chem. Geol. 77, 27 (1989); B. McElduff and E. F. Stumpfl, Mineral. Petrol. 42, 211 (1990); M. Leblanc, Econ. Geol. 90, 2028 (1995); J. Vuollo et al., ibid., p. 445.
-
(1984)
Econ. Geol.
, vol.79
, pp. 177
-
-
Page, N.J.1
Engin, T.2
Singer, D.A.3
Haffty, J.4
-
36
-
-
0024903163
-
-
N. J. Page, J. S. Pallister, M. A. Brown, J. D. Smewing, J. Haffty, Can. Mineral. 20, 537 (1982); N. J. Page and R. W. Talkington, ibid. 22, 137 (1984); N. J. Page, T. Engin, D. A. Singer, J. Haffty, Econ. Geol. 79, 177 (1984); A. Cocherie, T. Augé, G. Meyer, Chem. Geol. 77, 27 (1989); B. McElduff and E. F. Stumpfl, Mineral. Petrol. 42, 211 (1990); M. Leblanc, Econ. Geol. 90, 2028 (1995); J. Vuollo et al., ibid., p. 445.
-
(1989)
Chem. Geol.
, vol.77
, pp. 27
-
-
Cocherie, A.1
Augé, T.2
Meyer, G.3
-
37
-
-
0000820391
-
-
N. J. Page, J. S. Pallister, M. A. Brown, J. D. Smewing, J. Haffty, Can. Mineral. 20, 537 (1982); N. J. Page and R. W. Talkington, ibid. 22, 137 (1984); N. J. Page, T. Engin, D. A. Singer, J. Haffty, Econ. Geol. 79, 177 (1984); A. Cocherie, T. Augé, G. Meyer, Chem. Geol. 77, 27 (1989); B. McElduff and E. F. Stumpfl, Mineral. Petrol. 42, 211 (1990); M. Leblanc, Econ. Geol. 90, 2028 (1995); J. Vuollo et al., ibid., p. 445.
-
(1990)
Mineral. Petrol.
, vol.42
, pp. 211
-
-
McElduff, B.1
Stumpfl, E.F.2
-
38
-
-
0029479554
-
-
N. J. Page, J. S. Pallister, M. A. Brown, J. D. Smewing, J. Haffty, Can. Mineral. 20, 537 (1982); N. J. Page and R. W. Talkington, ibid. 22, 137 (1984); N. J. Page, T. Engin, D. A. Singer, J. Haffty, Econ. Geol. 79, 177 (1984); A. Cocherie, T. Augé, G. Meyer, Chem. Geol. 77, 27 (1989); B. McElduff and E. F. Stumpfl, Mineral. Petrol. 42, 211 (1990); M. Leblanc, Econ. Geol. 90, 2028 (1995); J. Vuollo et al., ibid., p. 445.
-
(1995)
Econ. Geol.
, vol.90
, pp. 2028
-
-
Leblanc, M.1
-
39
-
-
0019910587
-
-
N. J. Page, J. S. Pallister, M. A. Brown, J. D. Smewing, J. Haffty, Can. Mineral. 20, 537 (1982); N. J. Page and R. W. Talkington, ibid. 22, 137 (1984); N. J. Page, T. Engin, D. A. Singer, J. Haffty, Econ. Geol. 79, 177 (1984); A. Cocherie, T. Augé, G. Meyer, Chem. Geol. 77, 27 (1989); B. McElduff and E. F. Stumpfl, Mineral. Petrol. 42, 211 (1990); M. Leblanc, Econ. Geol. 90, 2028 (1995); J. Vuollo et al., ibid., p. 445.
-
Econ. Geol.
, pp. 445
-
-
Vuollo, J.1
-
41
-
-
0021552621
-
-
B. P. Kokelaar and M. F. Howells, Eds. Blackwell, Oxford, UK
-
J. A. Pearce, S. J. Lippard, S. Roberts, in Marginal Basin Geology, B. P. Kokelaar and M. F. Howells, Eds. (Blackwell, Oxford, UK, 1984), pp. 77-94; D. Elthon, Nature 354, 140 (1991).
-
(1984)
Marginal Basin Geology
, pp. 77-94
-
-
Pearce, J.A.1
Lippard, S.J.2
Roberts, S.3
-
42
-
-
0026307931
-
-
J. A. Pearce, S. J. Lippard, S. Roberts, in Marginal Basin Geology, B. P. Kokelaar and M. F. Howells, Eds. (Blackwell, Oxford, UK, 1984), pp. 77-94; D. Elthon, Nature 354, 140 (1991).
-
(1991)
Nature
, vol.354
, pp. 140
-
-
Elthon, D.1
-
43
-
-
0000414292
-
-
G. Agiorgitis and R. Wolf, Chem. Geol. 23, 267 (1978); I. O. Oshin and J. H. Crocket, Econ. Geol. 77, 1556 (1982); C. J. Copobianco, R. L. Hervig, M. J. Drake, Chem. Geol. 113, 23 (1994).
-
(1978)
Chem. Geol.
, vol.23
, pp. 267
-
-
Agiorgitis, G.1
Wolf, R.2
-
44
-
-
0019928762
-
-
G. Agiorgitis and R. Wolf, Chem. Geol. 23, 267 (1978); I. O. Oshin and J. H. Crocket, Econ. Geol. 77, 1556 (1982); C. J. Copobianco, R. L. Hervig, M. J. Drake, Chem. Geol. 113, 23 (1994).
-
(1982)
Econ. Geol.
, vol.77
, pp. 1556
-
-
Oshin, I.O.1
Crocket, J.H.2
-
45
-
-
0028255569
-
-
G. Agiorgitis and R. Wolf, Chem. Geol. 23, 267 (1978); I. O. Oshin and J. H. Crocket, Econ. Geol. 77, 1556 (1982); C. J. Copobianco, R. L. Hervig, M. J. Drake, Chem. Geol. 113, 23 (1994).
-
(1994)
Chem. Geol.
, vol.113
, pp. 23
-
-
Copobianco, C.J.1
Hervig, R.L.2
Drake, M.J.3
-
46
-
-
0019912499
-
-
Spinels from fertile western Australian Iherzolites, for example, are characterized by superchondritic Pd/Ir ratios (2), as are chromitites from stratiform chromite deposits [C. McLaren and J. P. R. De Villiers, Econ. Geol. 77, 1348 (1982); S. J. Perry, Chem. Geol. 43, 115 (1984)]. Furthermore, a large proportion of the PGE budget of fertile peridotite xenoliths appears to be contained in acid-leachable, intergranular sulfide phases, whereas spinel is only a minor host for the PGEs (2) [S. R. Hart and G. E. Ravizza, in Earth Processes: Reading the Isotopic Code, A. Basu and S. R. Hart, Eds. (American Geophysical Union, Washington, DC, 1996), pp. 123-134]. Although chromitites from ophiolite complexes are characterized by high PGE abundances, a number of detailed studies demonstrate that the PGEs are not incorporated into the lattice of the chromites but are concentrated in sulfide and alloy inclusions; the chromites themselves have no bearing on the fractionation of the PGEs [for example, H. W. Stockmann and P. F. Hlava, Econ. Geol. 79, 491 (1984); R. W. Talkington, D. H. Watkinson, P. J. Whittaker, P. C. Jones, Tschermaks Mineral. Petrogr. Mitt. 32, 285 (1984); R. J. Walker, E. Hanski, J. Vuollo, J. Liipo, Earth Planet. Sci. Lett. 141, 161 (1996)].
-
(1982)
Econ. Geol.
, vol.77
, pp. 1348
-
-
McLaren, C.1
De Villiers, J.P.R.2
-
47
-
-
0021349970
-
-
Spinels from fertile western Australian Iherzolites, for example, are characterized by superchondritic Pd/Ir ratios (2), as are chromitites from stratiform chromite deposits [C. McLaren and J. P. R. De Villiers, Econ. Geol. 77, 1348 (1982); S. J. Perry, Chem. Geol. 43, 115 (1984)]. Furthermore, a large proportion of the PGE budget of fertile peridotite xenoliths appears to be contained in acid-leachable, intergranular sulfide phases, whereas spinel is only a minor host for the PGEs (2) [S. R. Hart and G. E. Ravizza, in Earth Processes: Reading the Isotopic Code, A. Basu and S. R. Hart, Eds. (American Geophysical Union, Washington, DC, 1996), pp. 123-134]. Although chromitites from ophiolite complexes are characterized by high PGE abundances, a number of detailed studies demonstrate that the PGEs are not incorporated into the lattice of the chromites but are concentrated in sulfide and alloy inclusions; the chromites themselves have no bearing on the fractionation of the PGEs [for example, H. W. Stockmann and P. F. Hlava, Econ. Geol. 79, 491 (1984); R. W. Talkington, D. H. Watkinson, P. J. Whittaker, P. C. Jones, Tschermaks Mineral. Petrogr. Mitt. 32, 285 (1984); R. J. Walker, E. Hanski, J. Vuollo, J. Liipo, Earth Planet. Sci. Lett. 141, 161 (1996)].
-
(1984)
Chem. Geol.
, vol.43
, pp. 115
-
-
Perry, S.J.1
-
48
-
-
0019912499
-
-
A. Basu and S. R. Hart, Eds. American Geophysical Union, Washington, DC
-
Spinels from fertile western Australian Iherzolites, for example, are characterized by superchondritic Pd/Ir ratios (2), as are chromitites from stratiform chromite deposits [C. McLaren and J. P. R. De Villiers, Econ. Geol. 77, 1348 (1982); S. J. Perry, Chem. Geol. 43, 115 (1984)]. Furthermore, a large proportion of the PGE budget of fertile peridotite xenoliths appears to be contained in acid-leachable, intergranular sulfide phases, whereas spinel is only a minor host for the PGEs (2) [S. R. Hart and G. E. Ravizza, in Earth Processes: Reading the Isotopic Code, A. Basu and S. R. Hart, Eds. (American Geophysical Union, Washington, DC, 1996), pp. 123-134]. Although chromitites from ophiolite complexes are characterized by high PGE abundances, a number of detailed studies demonstrate that the PGEs are not incorporated into the lattice of the chromites but are concentrated in sulfide and alloy inclusions; the chromites themselves have no bearing on the fractionation of the PGEs [for example, H. W. Stockmann and P. F. Hlava, Econ. Geol. 79, 491 (1984); R. W. Talkington, D. H. Watkinson, P. J. Whittaker, P. C. Jones, Tschermaks Mineral. Petrogr. Mitt. 32, 285 (1984); R. J. Walker, E. Hanski, J. Vuollo, J. Liipo, Earth Planet. Sci. Lett. 141, 161 (1996)].
-
(1996)
Earth Processes: Reading the Isotopic Code
, pp. 123-134
-
-
Hart, S.R.1
Ravizza, G.E.2
-
49
-
-
0021424797
-
-
Spinels from fertile western Australian Iherzolites, for example, are characterized by superchondritic Pd/Ir ratios (2), as are chromitites from stratiform chromite deposits [C. McLaren and J. P. R. De Villiers, Econ. Geol. 77, 1348 (1982); S. J. Perry, Chem. Geol. 43, 115 (1984)]. Furthermore, a large proportion of the PGE budget of fertile peridotite xenoliths appears to be contained in acid-leachable, intergranular sulfide phases, whereas spinel is only a minor host for the PGEs (2) [S. R. Hart and G. E. Ravizza, in Earth Processes: Reading the Isotopic Code, A. Basu and S. R. Hart, Eds. (American Geophysical Union, Washington, DC, 1996), pp. 123-134]. Although chromitites from ophiolite complexes are characterized by high PGE abundances, a number of detailed studies demonstrate that the PGEs are not incorporated into the lattice of the chromites but are concentrated in sulfide and alloy inclusions; the chromites themselves have no bearing on the fractionation of the PGEs [for example, H. W. Stockmann and P. F. Hlava, Econ. Geol. 79, 491 (1984); R. W. Talkington, D. H. Watkinson, P. J. Whittaker, P. C. Jones, Tschermaks Mineral. Petrogr. Mitt. 32, 285 (1984); R. J. Walker, E. Hanski, J. Vuollo, J. Liipo, Earth Planet. Sci. Lett. 141, 161 (1996)].
-
(1984)
Econ. Geol.
, vol.79
, pp. 491
-
-
Stockmann, H.W.1
Hlava, P.F.2
-
50
-
-
0021335288
-
-
Spinels from fertile western Australian Iherzolites, for example, are characterized by superchondritic Pd/Ir ratios (2), as are chromitites from stratiform chromite deposits [C. McLaren and J. P. R. De Villiers, Econ. Geol. 77, 1348 (1982); S. J. Perry, Chem. Geol. 43, 115 (1984)]. Furthermore, a large proportion of the PGE budget of fertile peridotite xenoliths appears to be contained in acid-leachable, intergranular sulfide phases, whereas spinel is only a minor host for the PGEs (2) [S. R. Hart and G. E. Ravizza, in Earth Processes: Reading the Isotopic Code, A. Basu and S. R. Hart, Eds. (American Geophysical Union, Washington, DC, 1996), pp. 123-134]. Although chromitites from ophiolite complexes are characterized by high PGE abundances, a number of detailed studies demonstrate that the PGEs are not incorporated into the lattice of the chromites but are concentrated in sulfide and alloy inclusions; the chromites themselves have no bearing on the fractionation of the PGEs [for example, H. W. Stockmann and P. F. Hlava, Econ. Geol. 79, 491 (1984); R. W. Talkington, D. H. Watkinson, P. J. Whittaker, P. C. Jones, Tschermaks Mineral. Petrogr. Mitt. 32, 285 (1984); R. J. Walker, E. Hanski, J. Vuollo, J. Liipo, Earth Planet. Sci. Lett. 141, 161 (1996)].
-
(1984)
Tschermaks Mineral. Petrogr. Mitt.
, vol.32
, pp. 285
-
-
Talkington, R.W.1
Watkinson, D.H.2
Whittaker, P.J.3
Jones, P.C.4
-
51
-
-
0030454319
-
-
Spinels from fertile western Australian Iherzolites, for example, are characterized by superchondritic Pd/Ir ratios (2), as are chromitites from stratiform chromite deposits [C. McLaren and J. P. R. De Villiers, Econ. Geol. 77, 1348 (1982); S. J. Perry, Chem. Geol. 43, 115 (1984)]. Furthermore, a large proportion of the PGE budget of fertile peridotite xenoliths appears to be contained in acid-leachable, intergranular sulfide phases, whereas spinel is only a minor host for the PGEs (2) [S. R. Hart and G. E. Ravizza, in Earth Processes: Reading the Isotopic Code, A. Basu and S. R. Hart, Eds. (American Geophysical Union, Washington, DC, 1996), pp. 123-134]. Although chromitites from ophiolite complexes are characterized by high PGE abundances, a number of detailed studies demonstrate that the PGEs are not incorporated into the lattice of the chromites but are concentrated in sulfide and alloy inclusions; the chromites themselves have no bearing on the fractionation of the PGEs [for example, H. W. Stockmann and P. F. Hlava, Econ. Geol. 79, 491 (1984); R. W. Talkington, D. H. Watkinson, P. J. Whittaker, P. C. Jones, Tschermaks Mineral. Petrogr. Mitt. 32, 285 (1984); R. J. Walker, E. Hanski, J. Vuollo, J. Liipo, Earth Planet. Sci. Lett. 141, 161 (1996)].
-
(1996)
Earth Planet. Sci. Lett.
, vol.141
, pp. 161
-
-
Walker, R.J.1
Hanski, E.2
Vuollo, J.3
Liipo, J.4
-
52
-
-
1842378024
-
-
note
-
Three abyssal harzburgites from the MARK area (Mid-Atlantic Ridge, Kane Fracture Zone) with <1.0% CaO are characterized by suprachondritic Pd/Ir ratios and Pt/Ru ratios that are only marginally subchondritic (M. Rehkämper et al., in preparation). Two harzburgites from the Horomann peridotite (CaO < 0.5%), generally considered to represent former suboceanic mantle lithosphere, have Pd/Ir ratios of 0.15 to 0.20 but higher-than-chondritic ratios of Pt/Ir and R/Ru (E. Takazawa, thesis, MIT (1996); M. Rehkämper et al., in preparation]. These characteristics are remarkably similar to the results for harzburgite sample N12 from the Cameroon Line (this study). Six harzburgites and dunites from the Ronda and Beni Bousera massifs with 0.3 to 1% CaO display a wide range of Pd/Ir ratios (0.24 to 1.44) and R/Ru ratios (0.31 to 2.40) (6). These values are significantly larger, by at least a factor of 5, than the minimum ratios recorded for the northern Tanzanian xenoliths.
-
-
-
-
54
-
-
0000290680
-
-
Z. Johann, H. Dunlop, L. Le Bel, J. L. Robert, M. Volfinger, Fortschr. Mineral. 61, 105 (1983); P. Schiano et al., Earth Planet. Sci. Lett. 146, 489 (1997).
-
(1983)
Fortschr. Mineral.
, vol.61
, pp. 105
-
-
Johann, Z.1
Dunlop, H.2
Le Bel, L.3
Robert, J.L.4
Volfinger, M.5
-
55
-
-
0030813455
-
-
Z. Johann, H. Dunlop, L. Le Bel, J. L. Robert, M. Volfinger, Fortschr. Mineral. 61, 105 (1983); P. Schiano et al., Earth Planet. Sci. Lett. 146, 489 (1997).
-
(1997)
Earth Planet. Sci. Lett.
, vol.146
, pp. 489
-
-
Schiano, P.1
-
56
-
-
0023498733
-
-
S. A. Wood, Geochim. Cosmochim. Acta 51, 3041 (1987); M. E. Fleet and T.-W. Wu, ibid. 57, 3519 (1993).
-
(1987)
Geochim. Cosmochim. Acta
, vol.51
, pp. 3041
-
-
Wood, S.A.1
-
58
-
-
0019925750
-
-
R. R. Keays, E. H. Nickel, D. I. Groves, P. J. McGoldrick, Econ. Geol. 77, 1535 (1982); C. G. Ballhaus and E. F. Stumpfl. Contrib. Mineral. Petrol. 94, 193 (1986); A. D. Brandon, R. A. Creaser, S. B. Shirey, R. W. Carlson, Science 272, 861 (1996).
-
(1982)
Econ. Geol.
, vol.77
, pp. 1535
-
-
Keays, R.R.1
Nickel, E.H.2
Groves, D.I.3
McGoldrick, P.J.4
-
59
-
-
0022872198
-
-
R. R. Keays, E. H. Nickel, D. I. Groves, P. J. McGoldrick, Econ. Geol. 77, 1535 (1982); C. G. Ballhaus and E. F. Stumpfl. Contrib. Mineral. Petrol. 94, 193 (1986); A. D. Brandon, R. A. Creaser, S. B. Shirey, R. W. Carlson, Science 272, 861 (1996).
-
(1986)
Contrib. Mineral. Petrol.
, vol.94
, pp. 193
-
-
Ballhaus, C.G.1
Stumpfl, E.F.2
-
60
-
-
0029753774
-
-
R. R. Keays, E. H. Nickel, D. I. Groves, P. J. McGoldrick, Econ. Geol. 77, 1535 (1982); C. G. Ballhaus and E. F. Stumpfl. Contrib. Mineral. Petrol. 94, 193 (1986); A. D. Brandon, R. A. Creaser, S. B. Shirey, R. W. Carlson, Science 272, 861 (1996).
-
(1996)
Science
, vol.272
, pp. 861
-
-
Brandon, A.D.1
Creaser, R.A.2
Shirey, S.B.3
Carlson, R.W.4
-
65
-
-
1842328014
-
-
note
-
We thank M. Johnson, D.-C. Lee, J. Christensen, C. Hall, D. Teagle, and the other members of the RIGL team for help in keeping the P54 running smoothly and for many fruitful discussions; C. Paslick for field assistance; D. Bugocki and W. Yi for vital assistance during sample preparation; and S. Mukasa and J. Zipfel for helpful comments. Three anonymous referees provided very thorough and helpful reviews. This research was supported by NSF grants EAR 94-06248 and EAR 96-14457 and by DOE grant DE-FG02-94ER14412.
-
-
-
|