-
1
-
-
0003372328
-
-
edited by L. L. Sohn, G. Schön, and L. P. Kouwenhoven (Kluwer, Dordrecht)
-
L.P. Kouwenhoven et al., in Mesoscopic Electron Transport, edited by L. L. Sohn, G. Schön, and L. P. Kouwenhoven (Kluwer, Dordrecht, 1997), pp. 105-214.
-
(1997)
Mesoscopic Electron Transport
, pp. 105-214
-
-
Kouwenhoven, L.P.1
-
3
-
-
4143141365
-
-
U. Sivan, R. Berkovits, Y. Aloni, O. Prus, A. Auerbach, and G. Ben-Yoseph, Phys. Rev. Lett. 77, 1123 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 1123
-
-
Sivan, U.1
Berkovits, R.2
Aloni, Y.3
Prus, O.4
Auerbach, A.5
Ben-Yoseph, G.6
-
17
-
-
0001924595
-
-
edited by M. J. Giannoni, A. Voros, and J. Jinn-Justin (North-Holland, Amsterdam)
-
O. Bohigas, in Chaos and Quantum Physics, edited by M. J. Giannoni, A. Voros, and J. Jinn-Justin (North-Holland, Amsterdam, 1990), pp. 87-199.
-
(1990)
Chaos and Quantum Physics
, pp. 87-199
-
-
Bohigas, O.1
-
23
-
-
0001026225
-
-
S. R. Patel, S. M. Cronenwett, D. R. Stewart, A. G. Huibers, C. M. Marcus, C. I. Duruöz, J. S. Harris, K. Campman, and A. C. Gossard, Phys. Rev. Lett. 80, 4522 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 4522
-
-
Patel, S.R.1
Cronenwett, S.M.2
Stewart, D.R.3
Huibers, A.G.4
Marcus, C.M.5
Duruöz, C.I.6
Harris, J.S.7
Campman, K.8
Gossard, A.C.9
-
24
-
-
0038292311
-
-
S. Lüscher, T. Heinzel, K. Ensslin, W. Wegscheider, and M. Bichler, Phys. Rev. Lett. 86, 2118 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 2118
-
-
Lüscher, S.1
Heinzel, T.2
Ensslin, K.3
Wegscheider, W.4
Bichler, M.5
-
28
-
-
0344717984
-
-
R. Egger, W. Häusler, C. H. Mak, and H. Grabert, Phys. Rev. Lett. 82, 3320 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 3320
-
-
Egger, R.1
Häusler, W.2
Mak, C.H.3
Grabert, H.4
-
30
-
-
0013457159
-
-
note
-
We use a conjugated-gradient method to minimize the KS energy in the particle-in-box representation. The Hartree potential is calculated by a Fourier convolution approach. A simplified multigrid technique is used to accelerate the convergence.
-
-
-
-
32
-
-
85088490607
-
-
note
-
-4 and b = π/4. For the symmetric case γ = 0, we take λ to be 0.53, 0.6, 0.67, 0.74, and 0.81. For the asymmetric case we choose five sets of (λ,γ): (0.53, 0.1), (0.565, 0.2), (0.6, 0.1), (0.635, 0.15), and (0.67, 0.1).
-
-
-
-
33
-
-
0013454393
-
-
note
-
In the time-reversal symmetric case, there are three contributions to the average IPR, the direct, exchange, and Cooper pairings. However, when using the IPR to estimate interaction effects, higher-order processes in the screened interaction may renormalize the magnitude. This is well known for the Copper channel-its final magnitude is small. We take this into account by using 2I/3 in the estimate of the interaction effect.
-
-
-
-
35
-
-
0035010191
-
-
J. A. Folk, C. M. Marcus, R. Berkovits, I. L. Kurland, I. L. Aleiner, and B. L. Altshuler, Phys. Scr. T90, 26 (2001).
-
(2001)
Phys. Scr.
, vol.T90
, pp. 26
-
-
Folk, J.A.1
Marcus, C.M.2
Berkovits, R.3
Kurland, I.L.4
Aleiner, I.L.5
Altshuler, B.L.6
|