-
1
-
-
0001039217
-
-
Ph. Jacquod and A. D. Stone, Phys. Rev. Lett. 84, 3938 (2000)
-
Ph. Jacquod and A. D. Stone, Phys. Rev. Lett. 84, 3938 (2000).
-
-
-
-
2
-
-
36149062051
-
-
see also S. Doniach and E. Sondheimer, Green’s Functions for Solid State Physicists (Addison-Wesley, Reading, MA, 1974)
-
E. C. Stoner, Rep. Prog. Phys. 11, 43 (1947);see also S. Doniach and E. Sondheimer, Green’s Functions for Solid State Physicists (Addison-Wesley, Reading, MA, 1974).
-
(1947)
Rep. Prog. Phys.
, vol.11
, pp. 43
-
-
Stoner, E.C.1
-
5
-
-
85038345145
-
-
cond-mat/0012203 (unpublished)
-
For ferromagnetism in Hubbard-like models, see, e.g., D. Vollhardt, N. Blümer, K. Held, and M. Kollar, cond-mat/0012203 (unpublished)
-
-
-
Vollhardt, D.1
Blümer, N.2
Held, K.3
Kollar, M.4
-
7
-
-
85038291143
-
-
We will use the notations (Formula presented) and (Formula presented) for spin operators and (Formula presented) and (Formula presented) for the corresponding eigenvalues
-
We will use the notations (Formula presented) and (Formula presented) for spin operators and (Formula presented) and (Formula presented) for the corresponding eigenvalues.
-
-
-
-
8
-
-
85038285866
-
-
B. L. Altshuler and A. G. Aronov, in Electron-electron Interaction in Disordered Systems, edited by A.J. Efros and M. Pollak (Elsevier, New York, 1985)
-
B. L. Altshuler and A. G. Aronov, in Electron-electron Interaction in Disordered Systems, edited by A.J. Efros and M. Pollak (Elsevier, New York, 1985).
-
-
-
-
12
-
-
85038285272
-
-
cond-mat/0103098 (unpublished)
-
D. Ullmo and H. U. Baranger, cond-mat/0103098 (unpublished).
-
-
-
Ullmo, D.1
Baranger, H.U.2
-
16
-
-
0001159282
-
-
F. Simmel et al., Phys. Rev. B 59, R10 441 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. R10 441
-
-
Simmel, F.1
-
17
-
-
85038270455
-
-
cond-mat/0002226 (unpublished)
-
S. Lüscher, T. Heinzel, K. Ensslin, W. Wegscheider, and M. Bichler, cond-mat/0002226 (unpublished).
-
-
-
Lüscher, S.1
Heinzel, T.2
Ensslin, K.3
Wegscheider, W.4
Bichler, M.5
-
23
-
-
34547346865
-
-
T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981)
-
(1981)
Rev. Mod. Phys.
, vol.53
, pp. 385
-
-
Brody, T.A.1
Flores, J.2
French, J.B.3
Mello, P.A.4
Pandey, A.5
Wong, S.S.M.6
-
26
-
-
0034340611
-
-
Ph. Jacquod and A. D. Stone, Phys. Status Solidi: A 218, 113 (2000)
-
Ph. Jacquod and A. D. Stone, Phys. Status Solidi: A 218, 113 (2000).
-
-
-
-
27
-
-
85038292303
-
-
To avoid degeneracies in the (Formula presented) many-body spectrum, we added in our numerics a small random part to the equidistant spectrum, (Formula presented) (Formula presented)
-
To avoid degeneracies in the (Formula presented) many-body spectrum, we added in our numerics a small random part to the equidistant spectrum, (Formula presented) (Formula presented).
-
-
-
-
30
-
-
85038347501
-
-
Ya. M. Blanter and M. E. Raikh, cond-mat/0004327 (unpublished)
-
Ya. M. Blanter and M. E. Raikh, cond-mat/0004327 (unpublished).
-
-
-
-
33
-
-
85038345210
-
-
Note that this is a necessary but not sufficient condition. For example combining two (Formula presented) (Formula presented) objects gives a nonzero (Formula presented) component
-
Note that this is a necessary but not sufficient condition. For example combining two (Formula presented) (Formula presented) objects gives a nonzero (Formula presented) component.
-
-
-
-
40
-
-
85038282536
-
-
Phys. Rev. Lett.Ph. Jacquod and D. L. Shepelyansky, 79, 1837 (1997)
-
Phys. Rev. Lett.Ph. Jacquod and D. L. Shepelyansky, 79, 1837 (1997).
-
-
-
-
41
-
-
0000279979
-
-
V. V. Flambaum, A. A. Gribakina, G. F. Gribakin, and M. G. Kozlov, Phys. Rev. A 50, 267 (1994).
-
(1994)
Phys. Rev. A
, vol.50
, pp. 267
-
-
Flambaum, V.V.1
Gribakina, A.A.2
Gribakin, G.F.3
Kozlov, M.G.4
-
44
-
-
0030295787
-
-
V. Zelevinsky, B. A. Brown, N. Frazier, and M. Horoi, Phys. Rep. 276, 85 (1996).
-
(1996)
Phys. Rep.
, vol.276
, pp. 85
-
-
Zelevinsky, V.1
Brown, B.A.2
Frazier, N.3
Horoi, M.4
-
45
-
-
0001084632
-
-
Y. Alhassid, Ph. Jacquod, and A. Wobst, Phys. Rev. B 61, R13 357 (2000)
-
Y. Alhassid, Ph. Jacquod, and A. Wobst, Phys. Rev. B 61, R13 357 (2000)
-
-
-
-
46
-
-
0035283278
-
-
Y. Alhassid, Ph. Jacquod, and A. Wobst, Photonics Spectra 9, 393 (2001)
-
Y. Alhassid, Ph. Jacquod, and A. Wobst, Photonics Spectra 9, 393 (2001)
-
-
-
-
47
-
-
85038331611
-
-
cond-mat/0003255 (unpublished)
-
Y. Alhassid and A. Wobst, cond-mat/0003255 (unpublished)
-
-
-
Alhassid, Y.1
Wobst, A.2
-
49
-
-
3342899171
-
-
B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov, Phys. Rev. Lett. 78, 2803 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 2803
-
-
Altshuler, B.L.1
Gefen, Y.2
Kamenev, A.3
Levitov, L.S.4
-
52
-
-
0000292151
-
-
C. Mejia-Monasterio, J. Richert, T. Rupp, and H. A. Weidenmüller, Phys. Rev. Lett. 81, 5189 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 5189
-
-
Mejia-Monasterio, C.1
Richert, J.2
Rupp, T.3
Weidenmüller, H.A.4
-
59
-
-
0034294402
-
-
For a special class of randomly interacting bosonic models a mapping onto random polynomials has been constructed which quantitatively reproduces the angular momentum distribution of the ground state: D. Kusnezov, Phys. Rev. Lett. 85, 3773 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 3773
-
-
Kusnezov, D.1
-
61
-
-
33744694362
-
-
Note, however, that the ground-state distribution for the GOE has a typical width (Formula presented) so that the distributions of the two yrasts strongly overlap: C. A. Tracy and H. Widom, Commun. Math. Phys. 87, 449 (1983).
-
(1983)
Commun. Math. Phys.
, vol.87
, pp. 449
-
-
Tracy, C.A.1
Widom, H.2
-
64
-
-
0000025017
-
-
Ya. M. Blanter, Phys. Rev. B 54, 12 807 (1996)
-
Ya. M. Blanter, Phys. Rev. B 54, 12 807 (1996).
-
-
-
-
65
-
-
0000267791
-
-
Ya. M. Blanter and A. D. Mirlin, Phys. Rev. E 55, 6514 (1997)
-
Ya. M. Blanter and A. D. Mirlin, Phys. Rev. E 55, 6514 (1997).
-
-
-
-
66
-
-
85038345440
-
-
Note that also in absence of fluctuations it is easier to magnetize an even number than an odd number of fermions as the doubling of the spin gap at (Formula presented) from (Formula presented) to (Formula presented) is only partially compensated by a 1.5-fold increase of the gain in exchange energy
-
Note that also in absence of fluctuations it is easier to magnetize an even number than an odd number of fermions as the doubling of the spin gap at (Formula presented) from (Formula presented) to (Formula presented) is only partially compensated by a 1.5-fold increase of the gain in exchange energy.
-
-
-
-
67
-
-
0001349783
-
-
D. S. Duncan, D. Goldhaber-Gordon, R. M. Westervelt, K. D. Maranowski, and A. C. Gossard, Appl. Phys. Lett. 77, 2183 (2000)
-
(2000)
Appl. Phys. Lett.
, vol.77
, pp. 2183
-
-
Duncan, D.S.1
Goldhaber-Gordon, D.2
Westervelt, R.M.3
Maranowski, K.D.4
Gossard, A.C.5
-
68
-
-
85038310040
-
-
cond-mat/0010441 (unpublished)
-
J. A. Folk, C. M. Marcus, R. Berkovits, I. L. Kurland, I. L. Aleiner, and B. L. Altshuler, cond-mat/0010441 (unpublished).
-
-
-
Folk, J.A.1
Marcus, C.M.2
Berkovits, R.3
Kurland, I.L.4
Aleiner, I.L.5
Altshuler, B.L.6
-
69
-
-
85038296154
-
-
Ph. Jacquod, cond-mat/0102345 (unpublished)
-
Ph. Jacquod, cond-mat/0102345 (unpublished).
-
-
-
-
70
-
-
85038327334
-
-
We use (Formula presented) indifferently for both even and odd n even though in the latter case one should write (Formula presented)
-
We use (Formula presented) indifferently for both even and odd n even though in the latter case one should write (Formula presented).
-
-
-
-
71
-
-
85038348624
-
-
This is already the case in the perturbative regime where this width is essentially determined by first-order corrections. However, the dependence in n and m is different
-
This is already the case in the perturbative regime where this width is essentially determined by first-order corrections. However, the dependence in n and m is different.
-
-
-
-
72
-
-
85038323606
-
-
These results should be considered as a limit (Formula presented) as fluctuations are destroyed in a clean system
-
These results should be considered as a limit (Formula presented) as fluctuations are destroyed in a clean system.
-
-
-
-
74
-
-
85038286546
-
-
This is not exactly true as the infinite-ranged interaction destroys both fluctuations and exchange exactly. This result should be considered as a limit (Formula presented) (Formula presented)
-
This is not exactly true as the infinite-ranged interaction destroys both fluctuations and exchange exactly. This result should be considered as a limit (Formula presented) (Formula presented).
-
-
-
-
75
-
-
6244254091
-
-
Ya. M. Blanter, A. D. Mirlin, and B. A. Muzykantskii, Phys. Rev. Lett. 78, 2449 (1997)
-
Ya. M. Blanter, A. D. Mirlin, and B. A. Muzykantskii, Phys. Rev. Lett. 78, 2449 (1997).
-
-
-
-
76
-
-
0014380789
-
-
). This coupling causes a large, common energy shift of all the conductance peaks and experimentally one commonly subtracts it by considering the spacings between neighboring peaks (Formula presented) (Ref. c49). We are indebted to D. Goldhaber-Gordon for pointing this out to us
-
There is, however, a non-negligible coupling between the transverse component of the electronic wave function and the magnetic field: F. Stern, Phys. Rev. Lett. 21, 1687 (1968). This coupling causes a large, common energy shift of all the conductance peaks and experimentally one commonly subtracts it by considering the spacings between neighboring peaks (Formula presented) (Ref. 49). We are indebted to D. Goldhaber-Gordon for pointing this out to us.
-
(1968)
Phys. Rev. Lett.
, vol.21
, pp. 1687
-
-
Stern, F.1
-
78
-
-
0035131125
-
-
L. P. Rokhinson, L. J. Guo, S. Y. Chou, and D. C. Tsui, Phys. Rev. B 63, 035321 (2001)
-
(2001)
Phys. Rev. B
, vol.63
, pp. 35321
-
-
Rokhinson, L.P.1
Guo, L.J.2
Chou, S.Y.3
Tsui, D.C.4
-
80
-
-
0002803777
-
-
Zh. Éksp. Teor. Fiz. 84, 168 (1983)
-
A. M. Finkelstein, Zh. Éksp. Teor. Fiz. 84, 168 (1983) [Sov. Phys. JETP 57, 97 (1983)]
-
(1983)
Sov. Phys. JETP
, vol.57
, pp. 97
-
-
Finkelstein, A.M.1
-
83
-
-
0000342812
-
-
C. Castellani, C. Di Castro, P. A. Lee, M. Ma, S. Sorella, and E. Tabet, Phys. Rev. B 30, 1596 (1984).
-
(1984)
Phys. Rev. B
, vol.30
, pp. 1596
-
-
Castellani, C.1
Di Castro, C.2
Lee, P.A.3
Ma, M.4
Sorella, S.5
Tabet, E.6
|