-
1
-
-
0032539236
-
-
Haaf, M.; Schmiedl, A.; Schmedake, T. A.; Powell, D. R.; Millevolte, A. J.; Denk, M.; West, R. J. Am. Chem. Soc. 1998, 120, 12714.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 12714
-
-
Haaf, M.1
Schmiedl, A.2
Schmedake, T.A.3
Powell, D.R.4
Millevolte, A.J.5
Denk, M.6
West, R.7
-
2
-
-
0037165681
-
-
Moser, D. F.; Bosse, T.; Olson, J.; Moser, J. L.; Guzei, I. A.; West, R. J. Am. Chem. Soc. 2002, 124, 4186.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 4186
-
-
Moser, D.F.1
Bosse, T.2
Olson, J.3
Moser, J.L.4
Guzei, I.A.5
West, R.6
-
3
-
-
0013425759
-
-
note
-
The geometries and energetics of the stationary points on the potential energy surface of Figure 1 have been calculated with the B3LYP method (see refs 4 and 5) in conjunction with the 6-31G* basis set. All of the stationary points have been positively identified as equilibrium structures (the number of imaginary frequency (NIMAG = 0) or transition states (NIMAG = 1)). Relative energies are thus corrected for vibrational zero-point energies (ZPE, not scaled). All calculations were performed using the Gaussian 94 package (see ref 5).
-
-
-
-
6
-
-
0345491105
-
-
(c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
7
-
-
0004133516
-
-
Gaussian, Inc.: Pittsburgh, PA
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Peterson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94; Gaussian, Inc.: Pittsburgh, PA, 1995.
-
(1995)
Gaussian 94
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Gill, P.M.W.4
Johnson, B.G.5
Robb, M.A.6
Cheeseman, J.R.7
Keith, T.8
Peterson, G.A.9
Montgomery, J.A.10
Raghavachari, K.11
Al-Laham, M.A.12
Zakrzewski, V.G.13
Ortiz, J.V.14
Foresman, J.B.15
Cioslowski, J.16
Stefanov, B.B.17
Nanayakara, A.18
Challacombe, M.19
Peng, C.Y.20
Ayala, P.Y.21
Chen, W.22
Wong, M.W.23
Andres, J.L.24
Replogle, E.S.25
Gomperts, R.26
Martin, R.L.27
Fox, D.J.28
Binkley, J.S.29
Defrees, D.J.30
Baker, J.31
Stewart, J.P.32
Head-Gordon, M.33
Gonzalez, C.34
Pople, J.A.35
more..
-
8
-
-
0013326913
-
-
note
-
As one can see in Scheme 2, the computed structure of the disilane compound agrees well with the available experimental data. Thus, it is believed that the present models with the current method (B3LYP/6-31G*) employed in this study should provide reliable information for the discussion of the reaction mechanism.
-
-
-
|