-
2
-
-
0013452717
-
-
Report CNA-285, Center for Numerical Analysis, University of Texas at Austin, Austin, TX
-
J.-Y. Chen, Iterative solution of large nonsymmetric linear systems, Report CNA-285, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, 1997.
-
(1997)
Iterative Solution of Large Nonsymmetric Linear Systems
-
-
Chen, J.-Y.1
-
3
-
-
0033456602
-
Generalizations and modifications of the GMRES iterative method
-
Chen J.-Y., Kincaid D.R., Young D.M. Generalizations and modifications of the GMRES iterative method. Numer. Algorithms. 21:1999;119-146.
-
(1999)
Numer. Algorithms
, vol.21
, pp. 119-146
-
-
Chen, J.-Y.1
Kincaid, D.R.2
Young, D.M.3
-
4
-
-
25444452938
-
QMR: A quasi-minimal residual method for non-Hermitian linear systems
-
Freund R.W., Nachtigal N.M. QMR: A quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60:1991;315-339.
-
(1991)
Numer. Math.
, vol.60
, pp. 315-339
-
-
Freund, R.W.1
Nachtigal, N.M.2
-
5
-
-
0000135303
-
Methods of conjugate gradients for solving linear systems
-
Hestenes M.R., Stiefel E. Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49:(6):1952;409-436.
-
(1952)
J. Res. Nat. Bur. Stand.
, vol.49
, Issue.6
, pp. 409-436
-
-
Hestenes, M.R.1
Stiefel, E.2
-
6
-
-
0013452718
-
-
Report CNA-176, Center for Numerical Analysis, University of Texas at Austin, Austin, TX
-
K.C. Jea, Generalized conjugate gradient acceleration of iterative methods, Report CNA-176, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, 1982.
-
(1982)
Generalized Conjugate Gradient Acceleration of Iterative Methods
-
-
Jea, K.C.1
-
7
-
-
0000059778
-
On the simplification of generalized conjugate gradient methods for nonsymmetrizable linear systems
-
Jea K.C., Young D.M. On the simplification of generalized conjugate gradient methods for nonsymmetrizable linear systems. Linear Algebra Appl. 52-53:1983;399-417.
-
(1983)
Linear Algebra Appl.
, vol.52-53
, pp. 399-417
-
-
Jea, K.C.1
Young, D.M.2
-
9
-
-
0000048673
-
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
-
Saad Y., Schultz M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7:(3):1986;856-869.
-
(1986)
SIAM J. Sci. Statist. Comput.
, vol.7
, Issue.3
, pp. 856-869
-
-
Saad, Y.1
Schultz, M.H.2
-
10
-
-
0002716979
-
CGS: A fast Lanczos-type solver for nonsymmetric linear systems
-
Sonneveld P. CGS: A fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 10:(1):1989;36-52.
-
(1989)
SIAM J. Sci. Statist. Comput.
, vol.10
, Issue.1
, pp. 36-52
-
-
Sonneveld, P.1
-
11
-
-
0000005482
-
BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems
-
van der Vorst H.A. BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13:(2):1992;631-644.
-
(1992)
SIAM J. Sci. Statist. Comput.
, vol.13
, Issue.2
, pp. 631-644
-
-
Van der Vorst, H.A.1
-
12
-
-
0004129628
-
-
Report CNA-162, Center for Numerical Analysis, University of Texas at Austin, Austin, TX
-
D.M. Young, L.J. Hayes, K.C. Jea, Generalized conjugate gradient acceleration of iterative methods, Part I: The nonsymmetrizable case, Report CNA-162, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, 1981.
-
(1981)
Generalized Conjugate Gradient Acceleration of Iterative Methods, Part I: The Nonsymmetrizable Case
-
-
Young, D.M.1
Hayes, L.J.2
Jea, K.C.3
-
13
-
-
0001010277
-
Generalized Conjugate Gradient Acceleration of Iterative Methods
-
Young D.M., Jea K.C. Generalized conjugate gradient acceleration of iterative methods. Linear Algebra Appl. 34:1980;159-194.
-
(1980)
Linear Algebra Appl.
, vol.34
, pp. 159-194
-
-
Young, D.M.1
Jea, K.C.2
-
14
-
-
0004129628
-
-
Report CNA-163, Center for Numerical Analysis, University of Texas at Austin, Austin, TX
-
D.M. Young, K.C. Jea, Generalized conjugate gradient acceleration of iterative methods, Part II: The nonsymmetrizable case, Report CNA-163, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, 1981.
-
(1981)
Generalized Conjugate Gradient Acceleration of Iterative Methods, Part II: The Nonsymmetrizable Case
-
-
Young, D.M.1
Jea, K.C.2
|