메뉴 건너뛰기




Volumn 45, Issue 1, 2003, Pages 3-10

Variations of the GMRES iterative method

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; FINITE ELEMENT METHOD; LINEAR SYSTEMS; MATRIX ALGEBRA; PARTIAL DIFFERENTIAL EQUATIONS; PROBLEM SOLVING; VECTORS;

EID: 0037399644     PISSN: 01689274     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0168-9274(02)00231-3     Document Type: Conference Paper
Times cited : (2)

References (14)
  • 2
    • 0013452717 scopus 로고    scopus 로고
    • Report CNA-285, Center for Numerical Analysis, University of Texas at Austin, Austin, TX
    • J.-Y. Chen, Iterative solution of large nonsymmetric linear systems, Report CNA-285, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, 1997.
    • (1997) Iterative Solution of Large Nonsymmetric Linear Systems
    • Chen, J.-Y.1
  • 3
    • 0033456602 scopus 로고    scopus 로고
    • Generalizations and modifications of the GMRES iterative method
    • Chen J.-Y., Kincaid D.R., Young D.M. Generalizations and modifications of the GMRES iterative method. Numer. Algorithms. 21:1999;119-146.
    • (1999) Numer. Algorithms , vol.21 , pp. 119-146
    • Chen, J.-Y.1    Kincaid, D.R.2    Young, D.M.3
  • 4
    • 25444452938 scopus 로고
    • QMR: A quasi-minimal residual method for non-Hermitian linear systems
    • Freund R.W., Nachtigal N.M. QMR: A quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60:1991;315-339.
    • (1991) Numer. Math. , vol.60 , pp. 315-339
    • Freund, R.W.1    Nachtigal, N.M.2
  • 5
    • 0000135303 scopus 로고
    • Methods of conjugate gradients for solving linear systems
    • Hestenes M.R., Stiefel E. Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49:(6):1952;409-436.
    • (1952) J. Res. Nat. Bur. Stand. , vol.49 , Issue.6 , pp. 409-436
    • Hestenes, M.R.1    Stiefel, E.2
  • 7
    • 0000059778 scopus 로고
    • On the simplification of generalized conjugate gradient methods for nonsymmetrizable linear systems
    • Jea K.C., Young D.M. On the simplification of generalized conjugate gradient methods for nonsymmetrizable linear systems. Linear Algebra Appl. 52-53:1983;399-417.
    • (1983) Linear Algebra Appl. , vol.52-53 , pp. 399-417
    • Jea, K.C.1    Young, D.M.2
  • 9
    • 0000048673 scopus 로고
    • GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
    • Saad Y., Schultz M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7:(3):1986;856-869.
    • (1986) SIAM J. Sci. Statist. Comput. , vol.7 , Issue.3 , pp. 856-869
    • Saad, Y.1    Schultz, M.H.2
  • 10
    • 0002716979 scopus 로고
    • CGS: A fast Lanczos-type solver for nonsymmetric linear systems
    • Sonneveld P. CGS: A fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 10:(1):1989;36-52.
    • (1989) SIAM J. Sci. Statist. Comput. , vol.10 , Issue.1 , pp. 36-52
    • Sonneveld, P.1
  • 11
    • 0000005482 scopus 로고
    • BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems
    • van der Vorst H.A. BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13:(2):1992;631-644.
    • (1992) SIAM J. Sci. Statist. Comput. , vol.13 , Issue.2 , pp. 631-644
    • Van der Vorst, H.A.1
  • 13
    • 0001010277 scopus 로고
    • Generalized Conjugate Gradient Acceleration of Iterative Methods
    • Young D.M., Jea K.C. Generalized conjugate gradient acceleration of iterative methods. Linear Algebra Appl. 34:1980;159-194.
    • (1980) Linear Algebra Appl. , vol.34 , pp. 159-194
    • Young, D.M.1    Jea, K.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.