-
3
-
-
0031097281
-
Origins of scale invariance in growth processes
-
J. Krug, Origins of scale invariance in growth processes, Adv. Phys. 46:139 (1997).
-
(1997)
Adv. Phys.
, vol.46
, pp. 139
-
-
Krug, J.1
-
4
-
-
0001414241
-
Avalanche dynamics in evolution, growth, and depinning models
-
M. Paczuski, S. Maslov, and P. Bak, Avalanche dynamics in evolution, growth, and depinning models, Phys. Rev. E 53:414-443 (1996).
-
(1996)
Phys. Rev. E
, vol.53
, pp. 414-443
-
-
Paczuski, M.1
Maslov, S.2
Bak, P.3
-
5
-
-
0012575045
-
Kinetic roughening phenomena stochastic growth directed polymers and all that
-
T. Halpin-Healy and Y.-C. Zhang, Kinetic roughening phenomena stochastic growth directed polymers and all that, Phys. Rep. 254:215 (1995).
-
(1995)
Phys. Rep.
, vol.254
, pp. 215
-
-
Halpin-Healy, T.1
Zhang, Y.-C.2
-
7
-
-
4243603916
-
Large-distance and long-time properties of a randomly stirred fluid
-
D. Forester, D. R. Nelson, and M. J. Stephen, Large-distance and long-time properties of a randomly stirred fluid, Phys. Rev. A 16:732 (1977).
-
(1977)
Phys. Rev. A
, vol.16
, pp. 732
-
-
Forester, D.1
Nelson, D.R.2
Stephen, M.J.3
-
9
-
-
0002880483
-
An exactly solved model for interfacial growth
-
D. Dhar, An exactly solved model for interfacial growth, Phase Trans. 9:51 (1987).
-
(1987)
Phase Trans.
, vol.9
, pp. 51
-
-
Dhar, D.1
-
10
-
-
4243450938
-
Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation
-
L. H. Gwa and H. Spohn, Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation, Phys. Rev. A 46:844 (1992).
-
(1992)
Phys. Rev. A
, vol.46
, pp. 844
-
-
Gwa, L.H.1
Spohn, H.2
-
11
-
-
11744342693
-
Exact large deviation function in the asymmetric exclusion process
-
B. Derrida and J. L. Lebowitz, Exact large deviation function in the asymmetric exclusion process, Phys. Rev. Lett. 80:209-213 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 209-213
-
-
Derrida, B.1
Lebowitz, J.L.2
-
12
-
-
0040238394
-
Exact solution of the master equation for the asymmetric exclusion process
-
G. M. Schütz, Exact solution of the master equation for the asymmetric exclusion process, J. Stat. Phys. 88(1/2) (1997).
-
(1997)
J. Stat. Phys.
, vol.88
, Issue.1-2
-
-
Schütz, G.M.1
-
13
-
-
0002214237
-
An exactly soluble non-equilibrium system: The asymmetric simple exclusion model
-
B. Derrida, An exactly soluble non-equilibrium system: The asymmetric simple exclusion model, Phys. Rep. 301:65 (1998).
-
(1998)
Phys. Rep.
, vol.301
, pp. 65
-
-
Derrida, B.1
-
14
-
-
0038941179
-
Pairwise balance and invariant measures for generalized exclusion processes
-
G. M. Schutz, R. Ramaswamy, and M. Barma, Pairwise balance and invariant measures for generalized exclusion processes, J. Phys. A: Math. Gen. 29:837-843 (1996).
-
(1996)
J. Phys. A: Math. Gen.
, vol.29
, pp. 837-843
-
-
Schutz, G.M.1
Ramaswamy, R.2
Barma, M.3
-
15
-
-
0033212059
-
A two-parametric family of asymmetric exclusion processes and its exact solution
-
M. Alimohammadi, V. Karimipour, and M. Khorrami, A two-parametric family of asymmetric exclusion processes and its exact solution, J. Stat. Phys. 97:373-394 (1999).
-
(1999)
J. Stat. Phys.
, vol.97
, pp. 373-394
-
-
Alimohammadi, M.1
Karimipour, V.2
Khorrami, M.3
-
16
-
-
0032184676
-
One-dimensional asymmetric diffusion model without exclusion
-
T. Sasamoto and M. Wadati, One-dimensional asymmetric diffusion model without exclusion, Phys. Rev. E 58:4181-4190 (1998).
-
(1998)
Phys. Rev. E
, vol.58
, pp. 4181-4190
-
-
Sasamoto, T.1
Wadati, M.2
-
17
-
-
0034343904
-
Exact determination of the phase structure of a multi-species asymmetric exclusion process
-
M. Khorrami, Exact determination of the phase structure of a multi-species asymmetric exclusion process, J. Stat. Phys. 100(5):999-1030 (2000).
-
(2000)
J. Stat. Phys.
, vol.100
, Issue.5
, pp. 999-1030
-
-
Khorrami, M.1
-
18
-
-
5844290410
-
Self-organized criticality: An explanation of the 1/f noise
-
P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett. 59:381 (1987); Phys. Rev. A 38:364 (1988).
-
(1987)
Phys. Rev. Lett.
, vol.59
, pp. 381
-
-
Bak, P.1
Tang, C.2
Wiesenfeld, K.3
-
19
-
-
15744401041
-
-
P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett. 59:381 (1987); Phys. Rev. A 38:364 (1988).
-
(1988)
Phys. Rev. A
, vol.38
, pp. 364
-
-
-
21
-
-
0008679518
-
Two-state model of self-organized criticality
-
S. S. Manna, Two-state model of self-organized criticality, J. Phys. A: Math. Gen. 24(7):L363-L369 (1991).
-
(1991)
J. Phys. A: Math. Gen.
, vol.24
, Issue.7
-
-
Manna, S.S.1
-
22
-
-
0034297805
-
Absorbing-state phase transitions in fixed-energy sandpiles
-
A. Vespignani, R. Dickman, M. A. Munoz, and S. Zapperi, Absorbing-state phase transitions in fixed-energy sandpiles, Phys. Rev. E 62:4564 (2000).
-
(2000)
Phys. Rev. E
, vol.62
, pp. 4564
-
-
Vespignani, A.1
Dickman, R.2
Munoz, M.A.3
Zapperi, S.4
-
23
-
-
0035920815
-
Exact phase diagram for an asymmetric avalanche process
-
V. B. Priezzhev, E. V. Ivashkevich, A. M. Povolotsky, and C.-K. Hu, Exact phase diagram for an asymmetric avalanche process, Phys. Rev. Lett. 87(6):084301-1-084301-4 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, Issue.6
, pp. 0843011-0843014
-
-
Priezzhev, V.B.1
Ivashkevich, E.V.2
Povolotsky, A.M.3
Hu, C.-K.4
-
24
-
-
0001076627
-
Exactly solved model of self-organized criticality
-
S. Maslov and Y. C. Zhang, Exactly solved model of self-organized criticality, Phys. Rev. Lett. 75:1550 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 1550
-
-
Maslov, S.1
Zhang, Y.C.2
-
25
-
-
4244148810
-
Anisotropic surface growth model in disordered media
-
H. Jeong, B. Kahng, and D. Kim, Anisotropic surface growth model in disordered media, Phys. Rev. Lett. 77:5094-5097 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 5094-5097
-
-
Jeong, H.1
Kahng, B.2
Kim, D.3
-
26
-
-
0000992702
-
Emergent spatial structures in critical sandpiles
-
B. Tadic and D. Dhar, Emergent spatial structures in critical sandpiles, Phys. Rev. Lett. 79:1519-1522 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 1519-1522
-
-
Tadic, B.1
Dhar, D.2
-
27
-
-
0034293957
-
Theoretical results for sandpile models of self-organized criticality with multiple topplings
-
M. Paczuski and K. E. Bassler, Theoretical results for sandpile models of self-organized criticality with multiple topplings, Phys. Rev. E 62: 5347-5352 (2000).
-
(2000)
Phys. Rev. E
, vol.62
, pp. 5347-5352
-
-
Paczuski, M.1
Bassler, K.E.2
-
28
-
-
18344373010
-
Exact solution of a stochastic directed sandpile model
-
M. Kloster, S. Maslov, and C. Tang, Exact solution of a stochastic directed sandpile model, Phys. Rev. E 63:026111 (2001).
-
(2001)
Phys. Rev. E
, vol.63
, pp. 026111
-
-
Kloster, M.1
Maslov, S.2
Tang, C.3
-
29
-
-
41349094530
-
An interface view of directed sandpile dynamics
-
C.-C. Chen and M. den Nijs, An interface view of directed sandpile dynamics, Phys. Rev. E 65:031309 (2002).
-
(2002)
Phys. Rev. E
, vol.65
, pp. 031309
-
-
Chen, C.-C.1
Den Nijs, M.2
-
31
-
-
0032589530
-
Universal large-deviation function of the Kardar-Parisi-Zhang equation in one dimension
-
B. Derrida and C. Appert, Universal large-deviation function of the Kardar-Parisi-Zhang equation in one dimension, J. Stat. Phys. 94(1):1-30 (1999).
-
(1999)
J. Stat. Phys.
, vol.94
, Issue.1
, pp. 1-30
-
-
Derrida, B.1
Appert, C.2
-
32
-
-
0034207254
-
Probability distribution of the free energy of a directed polymer in a random medium
-
E. Brunet and B. Derrida, Probability distribution of the free energy of a directed polymer in a random medium, Phys. Rev. E 61(6):6789-6801.
-
Phys. Rev. E
, vol.61
, Issue.6
, pp. 6789-6801
-
-
Brunet, E.1
Derrida, B.2
-
33
-
-
0001288820
-
Bethe ansatz solution for crossover scaling functions of the asymmetric XYZ chain and the Kardar-Parisi-Zhang type growth model
-
D. Kim, Bethe ansatz solution for crossover scaling functions of the asymmetric XYZ chain and the Kardar-Parisi-Zhang type growth model, Phys. Rev. E 52:3512 (1995).
-
(1995)
Phys. Rev. E
, vol.52
, pp. 3512
-
-
Kim, D.1
-
34
-
-
0001628975
-
Large deviation function of the partially asymmetric exclusion process
-
D.-S. Lee and D. Kim, Large deviation function of the partially asymmetric exclusion process, Phys. Rev. E 59:6476 (1999).
-
(1999)
Phys. Rev. E
, vol.59
, pp. 6476
-
-
Lee, D.-S.1
Kim, D.2
-
35
-
-
0037380763
-
Finite size behavior of the asymmetric avalanche process
-
A. M. Povolotsky, V. B. Priezzhev, and C.-K. Hu, Finite size behavior of the asymmetric avalanche process, Physica A 321:280 (2003).
-
(2003)
Physica A
, vol.321
, pp. 280
-
-
Povolotsky, A.M.1
Priezzhev, V.B.2
Hu, C.-K.3
-
36
-
-
36049060424
-
Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field
-
B. Satherland, C. N. Yang, and C. P. Yang, Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field, Phys. Rev. Lett. 19:588 (1967).
-
(1967)
Phys. Rev. Lett.
, vol.19
, pp. 588
-
-
Satherland, B.1
Yang, C.N.2
Yang, C.P.3
-
37
-
-
0000219156
-
The asymmetric six-vertex model
-
I. Nolden, The asymmetric six-vertex model, J. Stat. Phys. 67:155 (1992).
-
(1992)
J. Stat. Phys.
, vol.67
, pp. 155
-
-
Nolden, I.1
-
38
-
-
21844502363
-
The conical point in the ferroelectric six-vertex model
-
D. J. Bukman and J. D. Shore, The conical point in the ferroelectric six-vertex model, J. Stat. Phys. 78:1277 (1995).
-
(1995)
J. Stat. Phys.
, vol.78
, pp. 1277
-
-
Bukman, D.J.1
Shore, J.D.2
|