메뉴 건너뛰기




Volumn 53, Issue 1, 1996, Pages 414-443

Avalanche dynamics in evolution, growth, and depinning models

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0001414241     PISSN: 1063651X     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevE.53.414     Document Type: Article
Times cited : (532)

References (114)
  • 3
    • 0004263139 scopus 로고    scopus 로고
    • The Fractal Geometry of Nature
    • Freeman, New York
    • B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1983).
    • Mandelbrot, B.B.1
  • 7
    • 85035226037 scopus 로고    scopus 로고
    • Fractals in the Earth Sciences, edited by C.C. Barton and P.R. Lapointe (Plenum, New York, 1994).
    • Fractals in the Earth Sciences, edited by C.C. Barton and P.R. Lapointe (Plenum, New York, 1994).
  • 9
    • 85035222291 scopus 로고    scopus 로고
    • See, for example, the empirical observations of H.E. Hurst described in Refs. cite mandelbrot and cite feder.
    • See, for example, the empirical observations of H.E. Hurst described in Refs. cite mandelbrot and cite feder.
  • 17
    • 84907019536 scopus 로고    scopus 로고
    • Fractals
    • Plenum, New York
    • J. Feder, Fractals (Plenum, New York, 1989).
    • Feder, J.1
  • 18
    • 84934555816 scopus 로고    scopus 로고
    • Chaos
    • World Scientific, Singapore
    • H. Bai Lin, Chaos (World Scientific, Singapore, 1984).
    • Bai Lin, H.1
  • 21
    • 0004021746 scopus 로고    scopus 로고
    • Fractals and Disordered Systems
    • A. Bunde and S. Havlin Springer, Berlin
    • P. Bak and M. Creutz, in Fractals and Disordered Systems, edited by A. Bunde and S. Havlin (Springer, Berlin, 1994), Vol. II;
    • , vol.II
    • Bak, P.1    Creutz, M.2
  • 53
    • 85035238441 scopus 로고    scopus 로고
    • Europhys. Lett. 27, 97 (1994).
    • Europhys. Lett. 27, 97 (1994).
  • 58
    • 85035209499 scopus 로고    scopus 로고
    • and unpublished.
    • and unpublished.
  • 86
    • 85035209156 scopus 로고    scopus 로고
    • D. Stauffer, Introduction to Percolation Theory (Taylor, London, 1985); G. Grimmett, Percolation (Springer, New York, 1989).
    • D. Stauffer, Introduction to Percolation Theory (Taylor, London, 1985); G. Grimmett, Percolation (Springer, New York, 1989).
  • 91
  • 92
    • 85035236070 scopus 로고    scopus 로고
    • The exponent relations derived in this section can be generalized to the case where the set of covered sites forms a fractal of dimension [Formula Presented]d rather than being compact. This is accomplished by replacing d with [Formula Presented] in all formulas in this section.
    • The exponent relations derived in this section can be generalized to the case where the set of covered sites forms a fractal of dimension dcovd rather than being compact. This is accomplished by replacing d with dcov in all formulas in this section.
  • 95
    • 85035222017 scopus 로고    scopus 로고
    • Note that our definition of η differs from the usual definition of η, which is defined with respect to parallel time, as in Ref. cite Grassb79, and which we refer to as [Formula Presented]. The quantity which we call η is equal to z[Formula Presented]/D.
    • Note that our definition of η differs from the usual definition of η, which is defined with respect to parallel time, as in Ref. cite Grassb79, and which we refer to as ηt. The quantity which we call η is equal to zηt/D.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.