-
3
-
-
0004263139
-
The Fractal Geometry of Nature
-
Freeman, New York
-
B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1983).
-
-
-
Mandelbrot, B.B.1
-
6
-
-
0000481507
-
-
A. Rinaldo, I. Rodriguez Iturbe, R. Rigon, E. Ijjasz Vasquez and R.L. Bras, Phys. Rev. Lett. 70, 822 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 822
-
-
Rinaldo, A.1
Rodriguez Iturbe, I.2
Rigon, R.3
Ijjasz Vasquez, E.4
Bras, R.L.5
-
7
-
-
85035226037
-
-
Fractals in the Earth Sciences, edited by C.C. Barton and P.R. Lapointe (Plenum, New York, 1994).
-
Fractals in the Earth Sciences, edited by C.C. Barton and P.R. Lapointe (Plenum, New York, 1994).
-
-
-
-
9
-
-
85035222291
-
-
See, for example, the empirical observations of H.E. Hurst described in Refs. cite mandelbrot and cite feder.
-
See, for example, the empirical observations of H.E. Hurst described in Refs. cite mandelbrot and cite feder.
-
-
-
-
13
-
-
85035231857
-
-
V. Frette, K. Christensen, A. Malthe Sorensen, J. Feder, T. Jossang, and P. Meakin (unpublished).
-
-
-
Frette, V.1
Christensen, K.2
Malthe Sorensen, A.3
Feder, J.4
Jossang, T.5
Meakin, P.6
-
14
-
-
0001413916
-
-
S. Field, J. Witt, F. Nori and X. Ling, Phys. Rev. Lett. 74, 1206 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 1206
-
-
Field, S.1
Witt, J.2
Nori, F.3
Ling, X.4
-
17
-
-
84907019536
-
Fractals
-
Plenum, New York
-
J. Feder, Fractals (Plenum, New York, 1989).
-
-
-
Feder, J.1
-
18
-
-
84934555816
-
Chaos
-
World Scientific, Singapore
-
H. Bai Lin, Chaos (World Scientific, Singapore, 1984).
-
-
-
Bai Lin, H.1
-
21
-
-
0004021746
-
Fractals and Disordered Systems
-
A. Bunde and S. Havlin Springer, Berlin
-
P. Bak and M. Creutz, in Fractals and Disordered Systems, edited by A. Bunde and S. Havlin (Springer, Berlin, 1994), Vol. II;
-
, vol.II
-
-
Bak, P.1
Creutz, M.2
-
27
-
-
11944253101
-
-
J.M. Carlson, J.T. Chayes, E.R. Grannan and G.H. Swindle, Phys. Rev. Lett. 65, 2547 (1990).
-
(1990)
Phys. Rev. Lett.
, vol.65
, pp. 2547
-
-
Carlson, J.M.1
Chayes, J.T.2
Grannan, E.R.3
Swindle, G.H.4
-
49
-
-
0020330958
-
-
R. Chandler, J. Koplik, K. Leman and J. Willemsen, J. Fluid Mech. 119, 249 (1982).
-
(1982)
J. Fluid Mech.
, vol.119
, pp. 249
-
-
Chandler, R.1
Koplik, J.2
Leman, K.3
Willemsen, J.4
-
53
-
-
85035238441
-
-
Europhys. Lett. 27, 97 (1994).
-
Europhys. Lett. 27, 97 (1994).
-
-
-
-
58
-
-
85035209499
-
-
and unpublished.
-
and unpublished.
-
-
-
-
59
-
-
0002619760
-
-
B. Jovanovic, S.V. Buldyrev, S. Havlin and H.E. Stanley, Phys. Rev. E 50, 2403 (1994).
-
(1994)
Phys. Rev. E
, vol.50
, pp. 2403
-
-
Jovanovic, B.1
Buldyrev, S.V.2
Havlin, S.3
Stanley, H.E.4
-
68
-
-
0028997867
-
-
K. Sneppen, P. Bak, H. Flyvbjerg and M.H. Jensen, Proc. Natl. Acad. Sci. U.S.A. 92, 5209 (1995);
-
(1995)
Proc. Natl. Acad. Sci. U.S.A.
, vol.92
, pp. 5209
-
-
Sneppen, K.1
Bak, P.2
Flyvbjerg, H.3
Jensen, M.H.4
-
72
-
-
0043062299
-
-
J. de Boer, B. Derrida, H. Flyvbjerg, A.D. Jackson and T. Wettig, Phys. Rev. Lett. 73, 906 (1994);
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 906
-
-
de Boer, J.1
Derrida, B.2
Flyvbjerg, H.3
Jackson, A.D.4
Wettig, T.5
-
81
-
-
3442878300
-
-
M.A. Rubio, C.A. Edwards, A. Dougherty and J.P. Gollub, Phys. Rev. Lett. 63, 1685 (1989).
-
(1989)
Phys. Rev. Lett.
, vol.63
, pp. 1685
-
-
Rubio, M.A.1
Edwards, C.A.2
Dougherty, A.3
Gollub, J.P.4
-
86
-
-
85035209156
-
-
D. Stauffer, Introduction to Percolation Theory (Taylor, London, 1985); G. Grimmett, Percolation (Springer, New York, 1989).
-
D. Stauffer, Introduction to Percolation Theory (Taylor, London, 1985); G. Grimmett, Percolation (Springer, New York, 1989).
-
-
-
-
91
-
-
85035229745
-
-
K. Sneppen (private communication).
-
-
-
Sneppen, K.1
-
92
-
-
85035236070
-
-
The exponent relations derived in this section can be generalized to the case where the set of covered sites forms a fractal of dimension [Formula Presented]d rather than being compact. This is accomplished by replacing d with [Formula Presented] in all formulas in this section.
-
The exponent relations derived in this section can be generalized to the case where the set of covered sites forms a fractal of dimension dcovd rather than being compact. This is accomplished by replacing d with dcov in all formulas in this section.
-
-
-
-
95
-
-
85035222017
-
-
Note that our definition of η differs from the usual definition of η, which is defined with respect to parallel time, as in Ref. cite Grassb79, and which we refer to as [Formula Presented]. The quantity which we call η is equal to z[Formula Presented]/D.
-
Note that our definition of η differs from the usual definition of η, which is defined with respect to parallel time, as in Ref. cite Grassb79, and which we refer to as ηt. The quantity which we call η is equal to zηt/D.
-
-
-
-
98
-
-
0000299047
-
-
L. Furuberg, J. Feder, A. Aharony and T. Jossang, Phys. Rev. Lett. 61, 2117 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.61
, pp. 2117
-
-
Furuberg, L.1
Feder, J.2
Aharony, A.3
Jossang, T.4
-
101
-
-
0001370981
-
-
J.W. Essam, K. De'Bell, J. Adler and F. Bhatti, Phys. Rev. B 33, 1982 (1986).
-
(1986)
Phys. Rev. B
, vol.33
, pp. 1982
-
-
Essam, J.W.1
De'Bell, K.2
Adler, J.3
Bhatti, F.4
-
106
-
-
0000329474
-
-
T. Nattermann, S. Stepanow, L. H. Tang and H. Leschhorn, J. Phys. (France) II 2, 1483 (1992);
-
(1992)
J. Phys. (France) II
, vol.2
, pp. 1483
-
-
Nattermann, T.1
Stepanow, S.2
Tang, L.H.3
Leschhorn, H.4
|