-
1
-
-
0034380364
-
Visualizing the collapse and revival of wave packets in the infinite square well using expectation values
-
R. W. Robinett, "Visualizing the collapse and revival of wave packets in the infinite square well using expectation values," Am. J. Phys. 68 (5), 410-420 (2000).
-
(2000)
Am. J. Phys.
, vol.68
, Issue.5
, pp. 410-420
-
-
Robinett, R.W.1
-
2
-
-
0035585177
-
Quantum revivals versus classical periodicity in the infinite square well
-
D. F. Styer, "Quantum revivals versus classical periodicity in the infinite square well," Am. J. Phys. 69 (1), 56-62 (2001).
-
(2001)
Am. J. Phys.
, vol.69
, Issue.1
, pp. 56-62
-
-
Styer, D.F.1
-
3
-
-
4244045533
-
Fractional revivals: Universality in the long-term evolution of quantum wave packets beyond the correspondence principle dynamics
-
I. Sh. Averbukh and N. F. Perelman, "Fractional revivals: Universality in the long-term evolution of quantum wave packets beyond the correspondence principle dynamics," Phys. Lett. A 139, 449-453 (1989); "Fractional revivals of wave packets," Acta Phys. Pol. A 78, 33-40 (1990).
-
(1989)
Phys. Lett. A
, vol.139
, pp. 449-453
-
-
Averbukh, I.Sh.1
Perelman, N.F.2
-
4
-
-
4244045533
-
Fractional revivals of wave packets
-
I. Sh. Averbukh and N. F. Perelman, "Fractional revivals: Universality in the long-term evolution of quantum wave packets beyond the correspondence principle dynamics," Phys. Lett. A 139, 449-453 (1989); "Fractional revivals of wave packets," Acta Phys. Pol. A 78, 33-40 (1990).
-
(1990)
Acta Phys. Pol. A
, vol.78
, pp. 33-40
-
-
-
5
-
-
0030537230
-
The evolution and revival structure of localized quantum wave packets
-
R. Bluhm, V. A. Kostelecký, and J. A. Porter, "The evolution and revival structure of localized quantum wave packets," Am. J. Phys. 64 (7), 944-953 (1996).
-
(1996)
Am. J. Phys.
, vol.64
, Issue.7
, pp. 944-953
-
-
Bluhm, R.1
Kostelecký, V.A.2
Porter, J.A.3
-
6
-
-
0000011289
-
Fractional wave-function revivals in the infinite square well
-
D. L. Aronstein and C. R. Stroud, "Fractional wave-function revivals in the infinite square well," Phys. Rev. A 55, 4526-4537 (1997).
-
(1997)
Phys. Rev. A
, vol.55
, pp. 4526-4537
-
-
Aronstein, D.L.1
Stroud, C.R.2
-
7
-
-
33646627631
-
-
note
-
in(x-y)/2π may diverge (in the literal, pointwise sense), but if we multiply it by ψ(y) and integrate term by term, we obtain the Fourier series of ψ(x); thus the sum converges in the distributional sense to the periodic extension of the Dirac delta function.
-
-
-
-
8
-
-
33646625752
-
-
note
-
To avoid technical issues, assume that ψ(0,x) is continuous inside the interval and that its limit as x approaches -L is equal to ψ(0,L).
-
-
-
-
9
-
-
33646625583
-
-
note
-
Whenever we write t=p/q, we shall assume that the fraction is in lowest terms. Thus the case of p and q both even does not need to be considered.
-
-
-
-
10
-
-
33646611788
-
-
http://www.math.tamu.edu/̃fulling/box/. The figures in this paper were made with MATHEMATICA. Some computations also were done with MAPLE. MATHEMATICA produces compact graphics that are more suitable for publication. MAPLE produces larger graphics whose greater detail was sometimes easier to interpret on the screen and in printouts.
-
-
-
-
11
-
-
33646625373
-
-
"Comment on 'The harmonic oscillator propagator,' by Barry R. Holstein [Am. J. Phys. 66 (7), 583-589 (1998)],"
-
F. U. Chaos and L. Chaos, "Comment on 'The harmonic oscillator propagator,' by Barry R. Holstein [Am. J. Phys. 66 (7), 583-589 (1998)]," Am. J. Phys. 67 (7), 643 (1999); N. S. Thornber and E. F. Taylor, "Propagator for the simple harmonic oscillator," ibid. 66 (11), 1022-1024 (1998).
-
(1999)
Am. J. Phys.
, vol.67
, Issue.7
, pp. 643
-
-
Chaos, F.U.1
Chaos, L.2
-
12
-
-
0032341657
-
Propagator for the simple harmonic oscillator
-
F. U. Chaos and L. Chaos, "Comment on 'The harmonic oscillator propagator,' by Barry R. Holstein [Am. J. Phys. 66 (7), 583-589 (1998)]," Am. J. Phys. 67 (7), 643 (1999); N. S. Thornber and E. F. Taylor, "Propagator for the simple harmonic oscillator," ibid. 66 (11), 1022-1024 (1998).
-
(1998)
Am. J. Phys.
, vol.66
, Issue.11
, pp. 1022-1024
-
-
Thornber, N.S.1
Taylor, E.F.2
-
13
-
-
33646611421
-
The spectrum of positive elliptic operators and periodic bicharacteristics
-
J. J. Duistermaat and V. W. Guillemin, "The spectrum of positive elliptic operators and periodic bicharacteristics," Invent. Math. 29, 39-79 (1975), especially pp. 45-56.
-
(1975)
Invent. Math.
, vol.29
, Issue.39-79
, pp. 45-56
-
-
Duistermaat, J.J.1
Guillemin, V.W.2
-
15
-
-
0004186403
-
-
Addison-Wesley, Reading, MA
-
H. Helson, Harmonic Analysis (Addison-Wesley, Reading, MA, 1983).
-
(1983)
Harmonic Analysis
-
-
Helson, H.1
-
16
-
-
0003847267
-
-
Chelsea, New York, Sec. 4.10
-
G. H. Hardy, Divergent Series (Chelsea, New York, 1991), Sec. 4.10.
-
(1991)
Divergent Series
-
-
Hardy, G.H.1
-
17
-
-
33646631806
-
-
note
-
Mathematical experts will note that Eq. (41) is not a complete triviality. It will hold in some reasonable topology, which may depend on the smoothness of ψ(0,x).
-
-
-
|