-
1
-
-
34250930798
-
Bemerkung über die angenäherte gültigkeit der klassischen mechanik innerhalb der quantenmechanik
-
P. Ehrenfest, "Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik," Z. Phys 45, 455-457 (1927). Reprinted in Martin J. Klein, Ed., Paul Ehrenfest: Collected Scientific Papers (North-Holland, Amsterdam, 1959), pp. 556-558.
-
(1927)
Z. Phys
, vol.45
, pp. 455-457
-
-
Ehrenfest, P.1
-
2
-
-
34250930798
-
-
North-Holland, Amsterdam
-
P. Ehrenfest, "Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik," Z. Phys 45, 455-457 (1927). Reprinted in Martin J. Klein, Ed., Paul Ehrenfest: Collected Scientific Papers (North-Holland, Amsterdam, 1959), pp. 556-558.
-
(1959)
Paul Ehrenfest: Collected Scientific Papers
, pp. 556-558
-
-
Klein, M.J.1
-
3
-
-
0002094837
-
Some quantum-to-classical asymptotics
-
Les Houches, edited by M.-J. Giannoni, A. Voros, and J. Zinn-Justin North-Holland, Amsterdam
-
Michael Berry, "Some quantum-to-classical asymptotics." in Chaos and Quantum Physics (Les Houches, 1989), edited by M.-J. Giannoni, A. Voros, and J. Zinn-Justin (North-Holland, Amsterdam, 1991), pp. 250-303.
-
(1989)
Chaos and Quantum Physics
, pp. 250-303
-
-
Berry, M.1
-
4
-
-
12044260119
-
Decoherence and the transition from quantum to classical
-
October
-
W. H. Zurek, "Decoherence and the transition from quantum to classical," Phys. Today 44, 36-44 (October 1991); Serge Haroche, "Entanglement, decoherence and the quantum/classical boundary," ibid. 51, 36-42 (July 1998).
-
(1991)
Phys. Today
, vol.44
, pp. 36-44
-
-
Zurek, W.H.1
-
5
-
-
0002243509
-
Entanglement, decoherence and the quantum/classical boundary
-
July
-
W. H. Zurek, "Decoherence and the transition from quantum to classical," Phys. Today 44, 36-44 (October 1991); Serge Haroche, "Entanglement, decoherence and the quantum/classical boundary," ibid. 51, 36-42 (July 1998).
-
(1998)
Phys. Today
, vol.51
, pp. 36-42
-
-
Haroche, S.1
-
7
-
-
0347190915
-
Postmodern quantum mechanics
-
July
-
Eric J. Heller and Steven Tomsovic, "Postmodern quantum mechanics," Phys. Today 46, 38-46 (July 1993).
-
(1993)
Phys. Today
, vol.46
, pp. 38-46
-
-
Heller, E.J.1
Tomsovic, S.2
-
8
-
-
0011063612
-
Quantum recurrence theorem
-
R. Bocchieri and A. Loinger, "Quantum recurrence theorem," Phys. Rev. 107, 337-338 (1957).
-
(1957)
Phys. Rev.
, vol.107
, pp. 337-338
-
-
Bocchieri, R.1
Loinger, A.2
-
10
-
-
0000303542
-
Revival structure of aligned rotational wave packets
-
Tamar Seideman, "Revival structure of aligned rotational wave packets," Phys. Rev. Lett. 83, 4971-4974 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 4971-4974
-
-
Seideman, T.1
-
11
-
-
0030537230
-
The evolution and revival structure of localized quantum wave packets
-
Robert Bluhm, V. Alan Kostelecký, and James A. Porter, "The evolution and revival structure of localized quantum wave packets," Am. J. Phys. 64, 944-953 (1996).
-
(1996)
Am. J. Phys.
, vol.64
, pp. 944-953
-
-
Bluhm, R.1
Kostelecký, V.A.2
Porter, J.A.3
-
12
-
-
0000011289
-
Fractional wave-function revivals in the infinite square well
-
David L. Aronstein and C. R. Stroud, Jr., "Fractional wave-function revivals in the infinite square well," Phys. Rev. A 55, 4526-4537 (1997).
-
(1997)
Phys. Rev. A
, vol.55
, pp. 4526-4537
-
-
Aronstein, D.L.1
Stroud C.R., Jr.2
-
14
-
-
0034380364
-
Visualizing the collapse and revival of wave packets in the infinite square well using expectation values
-
R. W. Robinett, "Visualizing the collapse and revival of wave packets in the infinite square well using expectation values," Am. J. Phys. 68, 410-420 (2000).
-
(2000)
Am. J. Phys.
, vol.68
, pp. 410-420
-
-
Robinett, R.W.1
-
15
-
-
0033418706
-
A quantum bouncing ball
-
Julio Gea-Banacloche, "A quantum bouncing ball," Am. J. Phys. 67, 776-782 (1999).
-
(1999)
Am. J. Phys.
, vol.67
, pp. 776-782
-
-
Gea-Banacloche, J.1
-
16
-
-
0002078204
-
The motion of wave packets through their expectation values and uncertainties
-
Daniel F. Styer, "The motion of wave packets through their expectation values and uncertainties," Am. J. Phys. 58, 742-744 (1990).
-
(1990)
Am. J. Phys.
, vol.58
, pp. 742-744
-
-
Styer, D.F.1
-
17
-
-
0002208273
-
WKB energy levels for a class of one-dimensional potentials
-
2N and the correspondence principle," Int. J. Theor. Phys. 18, 185-191 (1979); R. W. Robinett, "Wave packet revivals and quasirevivals in one-dimensional power law potentials," J. Math. Phys. 41, 1801-1813 (2000).
-
(1973)
Am. J. Phys.
, vol.41
, pp. 1015-1016
-
-
Sukhatme, U.P.1
-
18
-
-
0041059956
-
2N and the correspondence principle
-
2N and the correspondence principle," Int. J. Theor. Phys. 18, 185-191 (1979); R. W. Robinett, "Wave packet revivals and quasirevivals in one-dimensional power law potentials," J. Math. Phys. 41, 1801-1813 (2000).
-
(1979)
Int. J. Theor. Phys.
, vol.18
, pp. 185-191
-
-
Liboff, R.L.1
-
19
-
-
0034347152
-
Wave packet revivals and quasirevivals in one-dimensional power law potentials
-
2N and the correspondence principle," Int. J. Theor. Phys. 18, 185-191 (1979); R. W. Robinett, "Wave packet revivals and quasirevivals in one-dimensional power law potentials," J. Math. Phys. 41, 1801-1813 (2000).
-
(2000)
J. Math. Phys.
, vol.41
, pp. 1801-1813
-
-
Robinett, R.W.1
-
22
-
-
0000996310
-
Coherent dynamics of excitonic wave packets
-
J. Feldmann, T. Meier, G. von Plessen, M. Koch, E. O. Göbel, P. Thomas, G. Bacher, C. Hartmann, H. Schweizer, W. Schäfer, and H. Nickel, "Coherent dynamics of excitonic wave packets," Phys. Rev. Lett. 70, 3027-3030 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 3027-3030
-
-
Feldmann, J.1
Meier, T.2
Von Plessen, G.3
Koch, M.4
Göbel, E.O.5
Thomas, P.6
Bacher, G.7
Hartmann, C.8
Schweizer, H.9
Schäfer, W.10
Nickel, H.11
-
23
-
-
0000012651
-
Femtosecond infrared emission resulting from coherent charge oscillations in quantum wells
-
A. Bonvalet, J. Nagle, V. Berger, A. Migus, J.-L. Martin, and M. Joffre, "Femtosecond infrared emission resulting from coherent charge oscillations in quantum wells," Phys. Rev. Lett. 76, 4392-4395 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 4392-4395
-
-
Bonvalet, A.1
Nagle, J.2
Berger, V.3
Migus, A.4
Martin, J.-L.5
Joffre, M.6
-
24
-
-
84953650023
-
The correspondence principle revisited
-
February
-
R. L. Liboff, "The correspondence principle revisited," Phys. Today 37, 50-55 (February 1984).
-
(1984)
Phys. Today
, vol.37
, pp. 50-55
-
-
Liboff, R.L.1
-
25
-
-
0010875773
-
-
International Textbook Company, Scranton, PA
-
I represent an arbitrary wave function by ψ(x) and an energy eigenfunction by η(x), following the admirable convention established by Daniel T. Gillespie in A Quantum Mechanics Primer (International Textbook Company, Scranton, PA, 1970).
-
(1970)
A Quantum Mechanics Primer
-
-
Gillespie, D.T.1
-
26
-
-
84967801482
-
Bound-state wave packets
-
This result has been known for some time and rediscovered frequently. The earliest printed mention that I can find is Carlo U. Segre and J. D. Sullivan, "Bound-state wave packets," Am. J. Phys. 44, 729-732 (1976). See also Refs. 9 and 10, and Siegmund Brandt and Hans Dieter Dahmen, The Picture Book of Quantum Mechanics, 2nd ed. (Springer-Verlag, Berlin, 1995), pp. 107-108.
-
(1976)
Am. J. Phys.
, vol.44
, pp. 729-732
-
-
Segre, C.U.1
Sullivan, J.D.2
-
27
-
-
84967801482
-
-
Springer-Verlag, Berlin
-
This result has been known for some time and rediscovered frequently. The earliest printed mention that I can find is Carlo U. Segre and J. D. Sullivan, "Bound-state wave packets," Am. J. Phys. 44, 729-732 (1976). See also Refs. 9 and 10, and Siegmund Brandt and Hans Dieter Dahmen, The Picture Book of Quantum Mechanics, 2nd ed. (Springer-Verlag, Berlin, 1995), pp. 107-108.
-
(1995)
The Picture Book of Quantum Mechanics, 2nd Ed.
, pp. 107-108
-
-
Brandt, S.1
Dahmen, H.D.2
-
28
-
-
0030500601
-
Ehrenfest's theorem and the particle-in-the-box
-
The applicability of Ehrenfest's theorem to the pathological infinite square well is treated in the delightful paper D. S. Rokhsar, "Ehrenfest's theorem and the particle-in-the-box," Am. J. Phys. 64, 1416-1418 (1996).
-
(1996)
Am. J. Phys.
, vol.64
, pp. 1416-1418
-
-
Rokhsar, D.S.1
-
29
-
-
33744660290
-
-
note
-
This example also shows that for a general wave function the periodicity of 〈x(t)〉 is not equal to the classical period. The period of such expectation values can possess the expected classical limit but does not need to. To find a correspondence and resolve the paradox, we must restrict our attention to a small subset of wave functions, namely those that are in some sense "nearly classical."
-
-
-
-
30
-
-
33744606942
-
-
note
-
rev/3. Remarkably, it turns out that in all such cases the full wave function recurs with precisely the same period: see Theorem 6 in Appendix B.
-
-
-
-
31
-
-
33744570065
-
-
note
-
Notice that such a quasiclassical state does not need to be a conventional wave packet, although all conventional wave packets are quasiclassical states. The term "wave packet" usually refers to a wave function that is well-localized in space, with a probability density that decreases from the center. The term is also used for a wave function that is well-defined in energy, with an energy probability that decreases from the central energy. A quasiclassical state as defined here need not be well-localized in space, and, while it is a superposition of energy states in a particular range, within that range the energy probability may vary in any imaginable way.
-
-
-
|