-
3
-
-
84889086895
-
-
in press
-
For recent reviews, see: (a) W. D. Jones, Acc. Chem. Res. in press (b) R. M. Bullock and B. R. Bender, 'Isotope Methods in Homogeneous Catalysis' in Encyclopedia of Catalysis, ed. I. T. Horváth, Wiley, New York, 2003.
-
Acc. Chem. Res.
-
-
Jones, W.D.1
-
4
-
-
0012261170
-
-
ed. I. T. Horváth, Wiley, New York
-
For recent reviews, see: (a) W. D. Jones, Acc. Chem. Res. in press (b) R. M. Bullock and B. R. Bender, 'Isotope Methods in Homogeneous Catalysis' in Encyclopedia of Catalysis, ed. I. T. Horváth, Wiley, New York, 2003.
-
(2003)
Methods in Homo Geneous Catalysis' in Encyclopedia of Catalysis
-
-
Bullock, R.M.1
Bender, B.R.2
-
5
-
-
0041363059
-
-
R. M. Bullock, C. E. L. Headford, K. M. Hennessy, S. E. Kegley and J. R. Norton, J. Am. Chem. Soc., 1989, 111, 3897.
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 3897
-
-
Bullock, R.M.1
Headford, C.E.L.2
Hennessy, K.M.3
Kegley, S.E.4
Norton, J.R.5
-
8
-
-
0012338489
-
-
note
-
DFT B3LYP (Jaguar 4.1): Geometry optimizations and frequency calculations (6-31G** and LACVP** basis sets); single point calculations (cc-pVTZ(-f) and LACV3P** basis sets).
-
-
-
-
9
-
-
33748507090
-
-
2M(Me)H (M = Mo,W) derivatives, see: (a) J. C. Green and C. N. Jardine, J. Chem. Soc., Dalton Trans., 1998, 1057; (b) J. C. Green, J. N. Harvey and R. Poli, J. Chem. Soc., Dalton Trans., 2002, 1861; (c) M.-D. Su and S.-Y. Chu, J. Phys. Chem. A, 2001, 105, 3591.
-
(1998)
J. Chem. Soc., Dalton Trans.
, pp. 1057
-
-
Green, J.C.1
Jardine, C.N.2
-
10
-
-
0036010686
-
-
2M(Me)H (M = Mo,W) derivatives, see: (a) J. C. Green and C. N. Jardine, J. Chem. Soc., Dalton Trans., 1998, 1057; (b) J. C. Green, J. N. Harvey and R. Poli, J. Chem. Soc., Dalton Trans., 2002, 1861; (c) M.-D. Su and S.-Y. Chu, J. Phys. Chem. A, 2001, 105, 3591.
-
(2002)
J. Chem. Soc., Dalton Trans.
, pp. 1861
-
-
Green, J.C.1
Harvey, J.N.2
Poli, R.3
-
11
-
-
0035849239
-
-
2M(Me)H (M = Mo,W) derivatives, see: (a) J. C. Green and C. N. Jardine, J. Chem. Soc., Dalton Trans., 1998, 1057; (b) J. C. Green, J. N. Harvey and R. Poli, J. Chem. Soc., Dalton Trans., 2002, 1861; (c) M.-D. Su and S.-Y. Chu, J. Phys. Chem. A, 2001, 105, 3591.
-
(2001)
J. Phys. Chem. A
, vol.105
, pp. 3591
-
-
Su, M.-D.1
Chu, S.-Y.2
-
13
-
-
0012261609
-
-
note
-
We have also determined the isotope effects using the modification that employs the Redlich-Teller product rule, i.e. KIE = SYM·V-P·EXC·ZPE, and (ii) the thermodynamic values obtained directly from the DFT calculations. Significantly, the three methods yield very similar results, thereby providing an indication of the reliability of the calculations. See supporting information for comparison of the three methods.
-
-
-
-
14
-
-
0034823117
-
-
2]Rh(Me)H has also demonstrated that the inverse EIE for reductive coupling is a result of the normal kinetic isotope effect for reductive coupling being smaller than the normal kinetic isotope effect for oxidative coupling. See: T. O. Northcutt, D. D. Wick, A. J. Vetter and W. D. Jones, J. Am. Chem. Soc., 2001, 123, 7257.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 7257
-
-
Northcutt, T.O.1
Wick, D.D.2
Vetter, A.J.3
Jones, W.D.4
-
15
-
-
0012324211
-
-
note
-
As such, the derived transition state is not a well defined stationary point on the enthalpy surface; nevertheless, we have also calculated frequencies at other points on the singlet dissociation surface and find similar values.
-
-
-
-
16
-
-
0032582074
-
-
Although there are no experimentally determined EIE values for dissociation of methane from σ-complexes (or association of methane), related values have been reported for other alkanes. Interestingly, both normal and inverse values have been observed. See, for example: (a) S. Geftakis and G. E. Ball, J. Am. Chem. Soc., 1998, 120, 9953; (b) A. A. Bengali, R. H. Schultz, C. B. Moore and R. G. Bergman, J. Am. Chem. Soc., 1994, 116, 9585.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 9953
-
-
Geftakis, S.1
Ball, G.E.2
-
17
-
-
3342945390
-
-
Although there are no experimentally determined EIE values for dissociation of methane from σ-complexes (or association of methane), related values have been reported for other alkanes. Interestingly, both normal and inverse values have been observed. See, for example: (a) S. Geftakis and G. E. Ball, J. Am. Chem. Soc., 1998, 120, 9953; (b) A. A. Bengali, R. H. Schultz, C. B. Moore and R. G. Bergman, J. Am. Chem. Soc., 1994, 116, 9585.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 9585
-
-
Bengali, A.A.1
Schultz, R.H.2
Moore, C.B.3
Bergman, R.G.4
-
18
-
-
0012356198
-
-
note
-
re), thereby corresponding to the most extreme inverse value for the system.
-
-
-
-
19
-
-
0037012444
-
-
14a,b However, the validity of this claim has been questioned. See refs. 2(a) and 5. (a) H. C. Lo, A. Haskel, M. Kapon and E. Keinan, J. Am. Chem. Soc., 2002, 124, 3226; (b) M. A. Iron, H. C. Lo, J. M. L. Martin and E. Keinan, J. Am. Chem. Soc., 2002, 124, 7041.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 3226
-
-
Lo, H.C.1
Haskel, A.2
Kapon, M.3
Keinan, E.4
-
20
-
-
0037134822
-
-
14a,b However, the validity of this claim has been questioned. See refs. 2(a) and 5. (a) H. C. Lo, A. Haskel, M. Kapon and E. Keinan, J. Am. Chem. Soc., 2002, 124, 3226; (b) M. A. Iron, H. C. Lo, J. M. L. Martin and E. Keinan, J. Am. Chem. Soc., 2002, 124, 7041.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 7041
-
-
Iron, M.A.1
Lo, H.C.2
Martin, J.M.L.3
Keinan, E.4
|