-
1
-
-
0000478080
-
Diastereoselective epoxidation
-
Helmchem, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Houben Weyl, Thieme: Stuttgart, New York
-
Schwesinger, J. W.; Bauer, T. Diastereoselective Epoxidation. In Stereoselective synthesis; Helmchem, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Houben Weyl, Thieme: Stuttgart, New York 1995; Vol. E21e, p 4599.
-
(1995)
Stereoselective Synthesis
, vol.E21E
, pp. 4599
-
-
Schwesinger, J.W.1
Bauer, T.2
-
2
-
-
0032581928
-
-
(a) Bach, R. D.; Glukhovtsev, M. N.; Gonzales, C. J. Am. Chem. Soc. 1998, 120, 9902.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 9902
-
-
Bach, R.D.1
Glukhovtsev, M.N.2
Gonzales, C.3
-
3
-
-
0034613218
-
-
(b) Adam, W.; Bach, R. D.; Dmitrenko, O.; SahaMoller, C. R. J. Org. Chem. 2000, 65, 6715.
-
(2000)
J. Org. Chem.
, vol.65
, pp. 6715
-
-
Adam, W.1
Bach, R.D.2
Dmitrenko, O.3
SahaMoller, C.R.4
-
4
-
-
0031207661
-
-
(c) Bach, R. D.; Glukhovtsev, M. N.; Gonzales, C. Marquez, M.; Estevez, C. M.; Baboul, A. G.; Schlegel, H. B. J. Phys. Chem. A 1997, 101, 6092.
-
(1997)
J. Phys. Chem. A
, vol.101
, pp. 6092
-
-
Bach, R.D.1
Glukhovtsev, M.N.2
Gonzales, C.3
Marquez, M.4
Estevez, C.M.5
Baboul, A.G.6
Schlegel, H.B.7
-
5
-
-
0030669437
-
-
(a) Houk, K. N.; Liu, J.; DeMello, N. C.; Condroski, K. R. J. Am. Chem. Soc. 1997, 119, 10147.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 10147
-
-
Houk, K.N.1
Liu, J.2
DeMello, N.C.3
Condroski, K.R.4
-
6
-
-
33746812283
-
-
(b) Houk, K. N.; Washington, I. Angew. Chem., Int. Ed. 2001, 40, 2001.
-
(2001)
Angew. Chem., Int. Ed.
, vol.40
, pp. 2001
-
-
Houk, K.N.1
Washington, I.2
-
7
-
-
0011849328
-
-
(a) Freccero, M.; Gandolfi, R.; Sarzi-Amadè M.; Rastelli, A. J. Org. Chem. 1999, 64, 2030.
-
(1999)
J. Org. Chem.
, vol.64
, pp. 2030
-
-
Freccero, M.1
Gandolfi, R.2
Sarzi-Amadè, M.3
Rastelli, A.4
-
8
-
-
0034731624
-
-
(b) Freccero, M.; Gandolfi, R.; Sarzi-Amadè M.; Rastelli, A. J. Org. Chem. 2000, 65, 8948.
-
(2000)
J. Org. Chem.
, vol.65
, pp. 8948
-
-
Freccero, M.1
Gandolfi, R.2
Sarzi-Amadè, M.3
Rastelli, A.4
-
9
-
-
2242464225
-
-
B3LYP/6-31G* data: energy (hartrees) -574.510076; dipole moment (D) 4.0855
-
(c) B3LYP/6-31G* data: energy (hartrees) -574.510076; dipole moment (D) 4.0855
-
-
-
-
11
-
-
0037013879
-
-
2c (b) A "nonconcerted" (only one C-O bond is appreciably formed) planar TS with high dipolar character, which leads to the final epoxide without formation of intermediates, was advanced several years ago for the peroxy acid epoxidation of styrene derivatives on the basis of secondary deuterium isotope effects (Hanzlik, R. P.; Shearer, G. O. J. Am. Chem. Soc. 1975, 97, 5231). At variance with this suggestion our B3LYP calculations indicate that the transition structure of these reactions, although asynchronous, is concerted with spiro-like geometry (see TS D).
-
(2002)
Tetrahedron Lett.
, vol.43
, pp. 4215
-
-
Okovytyy, S.1
Gorb, L.2
Leszczynski, J.3
-
12
-
-
0001315132
-
-
2c (b) A "nonconcerted" (only one C-O bond is appreciably formed) planar TS with high dipolar character, which leads to the final epoxide without formation of intermediates, was advanced several years ago for the peroxy acid epoxidation of styrene derivatives on the basis of secondary deuterium isotope effects (Hanzlik, R. P.; Shearer, G. O. J. Am. Chem. Soc. 1975, 97, 5231). At variance with this suggestion our B3LYP calculations indicate that the transition structure of these reactions, although asynchronous, is concerted with spiro-like geometry (see TS D).
-
(1975)
J. Am. Chem. Soc.
, vol.97
, pp. 5231
-
-
Hanzlik, R.P.1
Shearer, G.O.2
-
13
-
-
2242478687
-
-
note
-
2a
-
-
-
-
14
-
-
0011803332
-
-
Roof, A. A. M.; Winter, W. J.; Bartlett, P. D. J. Org. Chem. 1985, 50, 4093.
-
(1985)
J. Org. Chem.
, vol.50
, pp. 4093
-
-
Roof, A.A.M.1
Winter, W.J.2
Bartlett, P.D.3
-
15
-
-
0033534553
-
-
(a) Koerner, T.; Slebocka-Tilk, H.; Brown, R. S. J. Org. Chem. 1999, 64, 196.
-
(1999)
J. Org. Chem.
, vol.64
, pp. 196
-
-
Koerner, T.1
Slebocka-Tilk, H.2
Brown, R.S.3
-
16
-
-
33845373732
-
-
(b) A "parallel" TS (corresponding to a planar TS) was previously suggested as favored for these systems by Rebek, J.; Marshall, L.; Wolak, R. J. Org. Chem. 1986, 51, 1649.
-
(1986)
J. Org. Chem.
, vol.51
, pp. 1649
-
-
Rebek, J.1
Marshall, L.2
Wolak, R.3
-
17
-
-
0000357417
-
-
(a) Brown, H. C.; Kawakami, J. H.; Ikegami, S. J. Am. Chem. Soc. 1970, 92, 6914.
-
(1970)
J. Am. Chem. Soc.
, vol.92
, pp. 6914
-
-
Brown, H.C.1
Kawakami, J.H.2
Ikegami, S.3
-
18
-
-
2242466855
-
-
(b) Meinwald, J.; Labana, S. S.; Labana, L. L.; Wahl, Jr; G. H. Tetrahetron Lett. 1965, 1789.
-
(1965)
Tetrahetron Lett.
, pp. 1789
-
-
Meinwald, J.1
Labana, S.S.2
Labana, L.L.3
Wahl G.H., Jr.4
-
19
-
-
84918635840
-
-
(a) Houk, K. N.; Rondan, N. G.; Brown, F. K. Isr. J. Chem 1983, 23, 3.
-
(1983)
Isr. J. Chem.
, vol.23
, pp. 3
-
-
Houk, K.N.1
Rondan, N.G.2
Brown, F.K.3
-
20
-
-
0011806825
-
-
and references therein
-
(b) Rastelli, A.; Bagatti, M.; Ori, A.; Gandolfi, R.; Burdisso, M. J. Chem. Soc., Faraday Trans. 1993, 89, 29 and references therein.
-
(1993)
J. Chem. Soc., Faraday Trans.
, vol.89
, pp. 29
-
-
Rastelli, A.1
Bagatti, M.2
Ori, A.3
Gandolfi, R.4
Burdisso, M.5
-
21
-
-
0033538630
-
-
A computational study on the face selectivity of the epoxidation of norbornene and norbornadiene has been recently reported, but the authors limited their investigation to a pair of TSs for each substrate and used only the semiempirical AM1 method. Marchand, A. P.; Ganguly, B.; Shukla, R.; Krishnudu, Kumar, S.; Watson, W. H.; Bodige, S. G. Tetrahedron 1999, 55, 8313.
-
(1999)
Tetrahedron
, vol.55
, pp. 8313
-
-
Marchand, A.P.1
Ganguly, B.2
Shukla, R.3
Krishnudu4
Kumar, S.5
Watson, W.H.6
Bodige, S.G.7
-
23
-
-
0345491105
-
-
Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
24
-
-
2242420255
-
-
note
-
Figures are reported in the Supporting Information.
-
-
-
-
25
-
-
0004133516
-
-
Gaussian, Inc., Pittsburgh, PA
-
Gaussian 98, Revision A.6: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
-
(1998)
Gaussian 98, Revision A.6
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Zakrzewski, V.G.7
Montgomery J.A., Jr.8
Stratmann, R.E.9
Burant, J.C.10
Dapprich, S.11
Millam, J.M.12
Daniels, A.D.13
Kudin, K.N.14
Strain, M.C.15
Farkas, O.16
Tomasi, J.17
Barone, V.18
Cossi, M.19
Cammi, R.20
Mennucci, B.21
Pomelli, C.22
Adamo, C.23
Clifford, S.24
Ochterski, J.25
Petersson, G.A.26
Ayala, P.Y.27
Cui, Q.28
Morokuma, K.29
Malick, D.K.30
Rabuck, A.D.31
Raghavachari, K.32
Foresman, J.B.33
Cioslowski, J.34
Ortiz, J.V.35
Stefanov, B.B.36
Liu, G.37
Liashenko, A.38
Piskorz, P.39
Komaromi, I.40
Gomperts, R.41
Martin, R.L.42
Fox, D.J.43
Keith, T.44
Al-Laham, M.A.45
Peng, C.Y.46
Nanayakkara, A.47
Gonzalez, C.48
Challacombe, M.49
Gill, P.M.W.50
Johnson, B.51
Chen, W.52
Wong, M.W.53
Andres, J.L.54
Gonzalez, C.55
Head-Gordon, M.56
Replogle, E.S.57
Pople, J.A.58
more..
-
26
-
-
2242440159
-
-
note
-
For the sake of simplicity the same numbering was used for norbornene, norbornadiene, and anti- and syn-sesquinorbornenes.
-
-
-
-
27
-
-
0000320783
-
-
Rastelli, A.; Bagatti, M.; Gandolfi, R. J. Am. Chem. Soc. 1995, 117, 4965.
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 4965
-
-
Rastelli, A.1
Bagatti, M.2
Gandolfi, R.3
-
28
-
-
2242453525
-
-
note
-
17,19b To avoid misunderstanding, let us emphasize that the corrected theoretical data are still intended for gas-phase reactions.
-
-
-
-
30
-
-
0000193645
-
-
(b) Jorgensen, W. L.; Lim, D.; Blake, J. F. J. Am. Chem. Soc. 1993, 115, 2936.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 2936
-
-
Jorgensen, W.L.1
Lim, D.2
Blake, J.F.3
-
34
-
-
0033972184
-
-
(d) Arnaud, R.; Adamo, C.; Cossi, M.; Milet, A.; Vallée; Y., Barone, V. J. Am. Chem. Soc. 2000, 122, 324.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 324
-
-
Arnaud, R.1
Adamo, C.2
Cossi, M.3
Milet, A.4
Vallée, Y.5
Barone, V.6
-
37
-
-
0034723307
-
-
Williams, R. V.; Colvin, M. E.; Tran, N.; Warrener, R. N.; Margetic, D. J. Org. Chem. 2000, 65, 562.
-
(2000)
J. Org. Chem.
, vol.65
, pp. 562
-
-
Williams, R.V.1
Colvin, M.E.2
Tran, N.3
Warrener, R.N.4
Margetic, D.5
-
38
-
-
0000818252
-
-
Ermer, O.; Bell, P.; Mason, S. A. Angew. Chem. 1989, 101, 1298.
-
(1989)
Angew. Chem.
, vol.101
, pp. 1298
-
-
Ermer, O.1
Bell, P.2
Mason, S.A.3
-
39
-
-
0000276455
-
-
Knuchel, G.; Grassi, G.; Vogelsanger, B.; Bauder, A. J. Am. Chem. Soc. 1993, 115, 10845.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 10845
-
-
Knuchel, G.1
Grassi, G.2
Vogelsanger, B.3
Bauder, A.4
-
40
-
-
2242422064
-
-
note
-
2 angle changes by 30° on passing from the B3LYP/6-31G(d) to the B3LYP/6-311+G(d,p) structure, the energy obtained by single-point B3LYP/6-311+G(d,p) calculation on the lower level structure is very similar (only 0.3 kcal/mol higher) to that of the fully optimized B3LYP/6-311+G(d,p) structure. That is, distortion away from an ideal spiro orientation is quite easy.
-
-
-
-
43
-
-
2242419352
-
-
note
-
IRC analysis shows that in the case of the syn,exo attack synchronous C-O bond formation uniformly proceeds along all the reaction coordinates, from reactants via TS syn,exo-2 to the final epoxide.
-
-
-
-
44
-
-
0001240376
-
-
Gajhede, M.; Jorgensen, F. M.; Kopecky, K. R.; Watson, W.; Kashyap, R. P. J. Org. Chem. 1985, 50, 4395.
-
(1985)
J. Org. Chem.
, vol.50
, pp. 4395
-
-
Gajhede, M.1
Jorgensen, F.M.2
Kopecky, K.R.3
Watson, W.4
Kashyap, R.P.5
-
45
-
-
0000923242
-
-
and references therein
-
Paquette, L. A.; Kunzer, H, Green, K. E.; De Lucchi, O.; Licini, G.; Pasquato, L.; Valle, G. J. Am. Chem. Soc. 1986, 108, 3453 and references therein.
-
(1986)
J. Am. Chem. Soc.
, vol.108
, pp. 3453
-
-
Paquette, L.A.1
Kunzer, H.2
Green, K.E.3
De Lucchi, O.4
Licini, G.5
Pasquato, L.6
Valle, G.7
-
46
-
-
2242460654
-
-
note
-
7 (in all these TSs the O-H bond is closer to the longer forming bond). B3LYP/6-31G(d) IRC analysis, on the product side, indicates that the final epoxide (hydrogen-bonded to the formic acid) is formed in a nonconcerted one-step process. It resides higher in energy than TS 4. However, we were not able to locate this TS with the higher basis set: 6-311+G(d,p) optimization starting from the 6-31G(d) geometry led to the planar TS 4
-
-
-
-
48
-
-
0033549040
-
-
note
-
(a) According to Lowe "the word concerted is meaningless unless we state what the two processes (the reference processes) are that occur simultaneously", and when "one process takes place first and the second one commences afterwards", the mechanism must be labeled "nonconcerted".35 Consequently, the process under study is nonconcerted as far as the timing of the two oxirane C-O bond formations is concerned. (b) Two reviewers emphasized that it might be better to keep the term "concerted" or "nonconcerted" for the absence or the presence, respectively, of an intermediate before the product formation. We feel that the terms "one-step" and "stepwise" are more adequate to describe these two possibilities while the terms "concerted" (that can be either "synchronous" or "asynchronous") and "nonconcerted" properly describe the bond timing. A concerted process necessarily corresponds to a one-step stereospecific (configuration retention) mechanism that follows, in the case of pericyclic reactions, the Woodward-Hoffmann (W-H) rules. A nonconcerted pathway can be either a stepwise (with possible configuration loss) or a one step pathway. It is interesting to emphasize that the stereochemical outcome of one-step nonconcerted processes is not controlled by W-H rules as nicely exemplified by the preference for the orbital symmetry forbidden stereochemistry exhibited by the 1,5-sigmatropic shift of substituted norcardiene systems (Kless, A.; Nendel, M.; Wilsey, S. Houk, K. N. J. Am. Chem. Soc. 1999, 121, 4524).
-
-
-
-
49
-
-
0033549040
-
-
(a) According to Lowe "the word concerted is meaningless unless we state what the two processes (the reference processes) are that occur simultaneously", and when "one process takes place first and the second one commences afterwards", the mechanism must be labeled "nonconcerted".35 Consequently, the process under study is nonconcerted as far as the timing of the two oxirane C-O bond formations is concerned. (b) Two reviewers emphasized that it might be better to keep the term "concerted" or "nonconcerted" for the absence or the presence, respectively, of an intermediate before the product formation. We feel that the terms "one-step" and "stepwise" are more adequate to describe these two possibilities while the terms "concerted" (that can be either "synchronous" or "asynchronous") and "nonconcerted" properly describe the bond timing. A concerted process necessarily corresponds to a one-step stereospecific (configuration retention) mechanism that follows, in the case of pericyclic reactions, the Woodward-Hoffmann (W-H) rules. A nonconcerted pathway can be either a stepwise (with possible configuration loss) or a one step pathway. It is interesting to emphasize that the stereochemical outcome of one-step nonconcerted processes is not controlled by W-H rules as nicely exemplified by the preference for the orbital symmetry forbidden stereochemistry exhibited by the 1,5-sigmatropic shift of substituted norcardiene systems (Kless, A.; Nendel, M.; Wilsey, S. Houk, K. N. J. Am. Chem. Soc. 1999, 121, 4524).
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 4524
-
-
Kless, A.1
Nendel, M.2
Wilsey, S.3
Houk, K.N.4
-
51
-
-
2242475971
-
-
note
-
Interestingly, the nonconcerted C-O bond formation in a onestep process via a planar TS, disclosed by IRC analysis, was anticipated by Rebek et al., on the basis of intuitive chemical reasoning.9b A mechanism that corresponds to a nonconcerted one-step process via a planar TS was also suggested by Hanzlik et al. for the peroxy acid epoxidation of styrene derivatives.6b
-
-
-
-
52
-
-
2242492025
-
-
note
-
A word of caution is in order as far as the chemical significance of IRC paths is concerned. One must always keep in mind that the meaning and theoretical status of IRC points is different from that of stationary points (minima and first-order saddle point) and avoid temptation to attribute excessive chemical significance to them. The IRC coordinate corresponds to the minimum energy path located in mass-weighted coordinates and is the path traced by a classical particle sliding from a saddle point down to a minimum with zero kinetic energy. It is a path on the potential energy surface, not a true trajectory: real molecules have kinetic energy and will not follow the intrinsic reaction path. Anyway, at present, IRC represents the more convenient description of the reaction mechanisms as they are qualitatively treated by organic chemists.
-
-
-
-
53
-
-
2242467803
-
-
note
-
Stabilization of the positive charge in 6 by σ delocalization is supported by the observation that it is 6.0 kcal/mol more stable than the corresponding protonated epoxide, while the protonated epoxide deriving from tetramethylethene resides 1.3 kcal/mol lower in energy than the related open α-hydroxy carbocation.
-
-
-
-
54
-
-
0035802906
-
-
Freccero, M.; Gandolfi, R.; Sarzi-Amadè M.; Rastelli, A. Tetrahedron 2001, 57, 9843.
-
(2001)
Tetrahedron
, vol.57
, pp. 9843
-
-
Freccero, M.1
Gandolfi, R.2
Sarzi-Amadè, M.3
Rastelli, A.4
|