-
1
-
-
0033583236
-
-
M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, Science 283, 1905 (1999).
-
(1999)
Science
, vol.283
, pp. 1905
-
-
Switkes, M.1
Marcus, C.M.2
Campman, K.3
Gossard, A.C.4
-
3
-
-
34249771653
-
-
M. Büttiker, H. Thomas, and A. Prêtre, Z. Phys. B 94, 133 (1994); M. Büttiker, J. Phys.: Condens. Matter 5, 9361 (1993).
-
(1994)
Z. Phys. B
, vol.94
, pp. 133
-
-
Büttiker, M.1
Thomas, H.2
Prêtre, A.3
-
4
-
-
2942663574
-
-
M. Büttiker, H. Thomas, and A. Prêtre, Z. Phys. B 94, 133 (1994); M. Büttiker, J. Phys.: Condens. Matter 5, 9361 (1993).
-
(1993)
J. Phys.: Condens. Matter
, vol.5
, pp. 9361
-
-
Büttiker, M.1
-
13
-
-
0034667036
-
-
J. E. Avron, A. Elgart, G. M. Graf, and L. Sadun, Phys. Rev. B 62, 10 618 (2000).
-
(2000)
Phys. Rev. B
, vol.62
, pp. 10618
-
-
Avron, J.E.1
Elgart, A.2
Graf, G.M.3
Sadun, L.4
-
14
-
-
84902540342
-
-
J. E. Avron, A. Elgart, G. M. Graf, and L. Sadun, Phys. Rev. Lett. 87, 236601 (2001); J. Math. Phys. 43, 3415 (2002).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 236601
-
-
Avron, J.E.1
Elgart, A.2
Graf, G.M.3
Sadun, L.4
-
15
-
-
0036629929
-
-
J. E. Avron, A. Elgart, G. M. Graf, and L. Sadun, Phys. Rev. Lett. 87, 236601 (2001); J. Math. Phys. 43, 3415 (2002).
-
(2002)
J. Math. Phys.
, vol.43
, pp. 3415
-
-
-
16
-
-
33646618114
-
-
A. Alekseev, cond-mat/0201474 (unpublished)
-
A. Alekseev, cond-mat/0201474 (unpublished).
-
-
-
-
19
-
-
33646610738
-
-
L. S. Levitov, cond-mat/0103617 (unpublished)
-
L. S. Levitov, cond-mat/0103617 (unpublished).
-
-
-
-
24
-
-
33646607592
-
-
B. Wang and J. Wang cond-mat/0207495 (unpublished)
-
B. Wang and J. Wang cond-mat/0207495 (unpublished).
-
-
-
-
28
-
-
33646612914
-
-
S. W. Kim, cond-mat/0208099 (unpublished)
-
S. W. Kim, cond-mat/0208099 (unpublished).
-
-
-
-
29
-
-
33646609939
-
-
D. Cohen, cond-mat/0208233 (unpublished)
-
D. Cohen, cond-mat/0208233 (unpublished).
-
-
-
-
30
-
-
33646622363
-
-
note
-
The crossover from adiabatic to nonadiabatic transmission through a tunnel barrier with an additional small-amplitude oscillating potential was used in Ref. 29 to find the traversal time for tunneling. This yields a time scale that differs from the more widely: used Wigner and Wigner-Smith times, We refer, the interested reader to Ref. 30.
-
-
-
-
32
-
-
0003964085
-
-
edited by J. G. Muga, R. Sala Mayato and I. L. Egusquiza (Springer-Verlag, Berlin)
-
Time in Quantum Mechanics, edited by J. G. Muga, R. Sala Mayato and I. L. Egusquiza (Springer-Verlag, Berlin, 2002).
-
(2002)
Time in Quantum Mechanics
-
-
-
34
-
-
0001562201
-
-
M. Wagner, Phys. Rev. B 49, 16544 (1994): Phys. Rev. A 51, 798 (1995).
-
(1994)
Phys. Rev. B.
, vol.49
, pp. 16544
-
-
Wagner, M.1
-
35
-
-
16444380033
-
-
M. Wagner, Phys. Rev. B 49, 16544 (1994): Phys. Rev. A 51, 798 (1995).
-
(1995)
Phys. Rev. A
, vol.51
, pp. 798
-
-
-
39
-
-
33646624212
-
-
D. F. Martinez and L. E. Reichl, cond-mat/0106264 (unpublished)
-
D. F. Martinez and L. E. Reichl, cond-mat/0106264 (unpublished).
-
-
-
-
46
-
-
33646631109
-
-
M. V. Moskalets, Zh. Éksp. Teor. Fiz. 114, 1827 (1998) [JETP 87, 991 (1998)].
-
(1998)
JETP
, vol.87
, pp. 991
-
-
-
48
-
-
33646629985
-
-
note
-
The same problem but with a single oscillating δ-function barrier was considered in Ref. 36.
-
-
-
-
49
-
-
0034664451
-
-
The phase change by π in consecutive resonances is special for the two-barrier model considered here. For systems with lateral extent the phase change of consecutive resonances is randomly π or 2 π [see A. Levy Yeyati and M. Büttiker, Phys. Rev. B 62, 7307 (2000)].
-
(2000)
Phys. Rev. B
, vol.62
, pp. 7307
-
-
Levy Yeyati, A.1
Büttiker, M.2
-
50
-
-
33646613278
-
-
note
-
Note that the phase coherent pump effect discussed here should be distinguished from the rectification of displacement currents recently discussed by Brouwer (Ref. 9) and Polianski'and Brouwer (Ref. 10), which is closely related to the setup of the experiment of Switkes et al. (Ref. 1) and should be distinguished from the rectification due to inelastic scattering discussed in Ref. 11.
-
-
-
-
51
-
-
3343004181
-
-
The phase of a quantum dot cannot be determined in a twoterminal conductance measurement [see A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Phys. Rev. Lett. 74, 4047 (1995)] but requires multiterminal measurements [see A. Levy Yeyati and M. Büttiker, Phys. Rev. B 52, R14 360 (1995) for an early discussion and for a broader review, G. Hackenbroich, Phys. Rep. 343, 464 (2001)]. In contrast nonadiabatic pumping proposed here permits a two-terminal geometry.
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 4047
-
-
Yacoby, A.1
Heiblum, M.2
Mahalu, D.3
Shtrikman, H.4
-
52
-
-
4243987998
-
-
The phase of a quantum dot cannot be determined in a twoterminal conductance measurement [see A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Phys. Rev. Lett. 74, 4047 (1995)] but requires multiterminal measurements [see A. Levy Yeyati and M. Büttiker, Phys. Rev. B 52, R14 360 (1995) for an early discussion and for a broader review, G. Hackenbroich, Phys. Rep. 343, 464 (2001)]. In contrast nonadiabatic pumping proposed here permits a two-terminal geometry.
-
(1995)
Phys. Rev. B
, vol.52
-
-
Levy Yeyati, A.1
Büttiker, M.2
-
53
-
-
3343004181
-
-
The phase of a quantum dot cannot be determined in a twoterminal conductance measurement [see A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Phys. Rev. Lett. 74, 4047 (1995)] but requires multiterminal measurements [see A. Levy Yeyati and M. Büttiker, Phys. Rev. B 52, R14 360 (1995) for an early discussion and for a broader review, G. Hackenbroich, Phys. Rep. 343, 464 (2001)]. In contrast nonadiabatic pumping proposed here permits a two-terminal geometry.
-
(2001)
Phys. Rep.
, vol.343
, pp. 464
-
-
Hackenbroich, G.1
|