-
2
-
-
12044254174
-
-
L.P. Kouwenhoven, A.T. Johnson, N.C. van der Vaart, C.J.P.M. Harmans, and C.T. Foxon, Phys. Rev. Lett. 67, 1626 (1991).
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 1626
-
-
Kouwenhoven, L.P.1
Johnson, A.T.2
van der Vaart, N.C.3
Harmans, C.J.P.M.4
Foxon, C.T.5
-
3
-
-
84956087854
-
-
H. Pothier, P. Lafarge, C. Urbina, D. Esteve, and M.H. Devoret, Europhys. Lett. 17, 249 (1992).
-
(1992)
Europhys. Lett.
, vol.17
, pp. 249
-
-
Pothier, H.1
Lafarge, P.2
Urbina, C.3
Esteve, D.4
Devoret, M.H.5
-
4
-
-
0000735187
-
-
T.H. Oosterkamp, L.P. Kouwenhoven, A.E.A. Koolen, N.C. van der Vaart, and C.J.P.M. Harmans, Phys. Rev. Lett. 78, 1536 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 1536
-
-
Oosterkamp, T.H.1
Kouwenhoven, L.P.2
Koolen, A.E.A.3
van der Vaart, N.C.4
Harmans, C.J.P.M.5
-
5
-
-
85038915722
-
-
For reviews, see L.P. Kouwenhoven, C.M. Marcus, P.L. McEven, S. Tarucha, R.M. Westervelt, and N.S. Wingreen, in Mesoscopic Electron Transport, edited by L.L. Sohn, L.P. Kouwenhoven, and G. Schön (Kluwer, Dordrecht, 1997);
-
For reviews, see L.P. Kouwenhoven, C.M. Marcus, P.L. McEven, S. Tarucha, R.M. Westervelt, and N.S. Wingreen, in Mesoscopic Electron Transport, edited by L.L. Sohn, L.P. Kouwenhoven, and G. Schön (Kluwer, Dordrecht, 1997);
-
-
-
-
9
-
-
0033583236
-
-
M. Switkes, C.M. Marcus, K. Campman, and A.C. Gossard, Science 283, 1905 (1999).
-
(1999)
Science
, vol.283
, pp. 1905
-
-
Switkes, M.1
Marcus, C.M.2
Campman, K.3
Gossard, A.C.4
-
15
-
-
0034667036
-
-
J.E. Avron, A. Elgart, G.M. Graf, and L. Sadun, Phys. Rev. B 62, 10 618 (2000).
-
(2000)
Phys. Rev. B
, vol.62
, pp. 10 618
-
-
Avron, J.E.1
Elgart, A.2
Graf, G.M.3
Sadun, L.4
-
16
-
-
85038899966
-
-
A detailed exposition of the definitions of (electro)chemical potential, bias voltage, and self-consistent potential can be found in the work by M. Büttiker and T. Christen, in Quantum Transport in Semiconductor Submicron Structures, edited by B. Kramer, Vol. 326 of NATO Advanced Studies Institute (Kluwer, Dordrecht, 1996)
-
A detailed exposition of the definitions of (electro)chemical potential, bias voltage, and self-consistent potential can be found in the work by M. Büttiker and T. Christen, in Quantum Transport in Semiconductor Submicron Structures, edited by B. Kramer, Vol. 326 of NATO Advanced Studies Institute (Kluwer, Dordrecht, 1996).
-
-
-
-
20
-
-
85038892556
-
-
cond-mat/0103008 (unpublished). Even for single-channel point contacts, one has (Formula presented), and the quantitative effect of these corrections is small
-
Corrections to the self-consistent description are small as (Formula presented) where (Formula presented) is the total number of channels connecting the dot to the reservoirs, including spin degeneracy, see I.L. Aleiner, P.W. Brouwer, and L.I. Glazman, cond-mat/0103008 (unpublished). Even for single-channel point contacts, one has (Formula presented), and the quantitative effect of these corrections is small.
-
-
-
Aleiner, I.L.1
Brouwer, P.W.2
Glazman, L.I.3
-
21
-
-
0031552833
-
-
P.W. Brouwer, S.A. van Langen, K.M. Frahm, M. Büttiker, and C.W.J. Beenakker, Phys. Rev. Lett. 79, 913 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 913
-
-
Brouwer, P.W.1
van Langen, S.A.2
Frahm, K.M.3
Büttiker, M.4
Beenakker, C.W.J.5
-
24
-
-
36149017915
-
-
The matrix (Formula presented) is the Wigner-Smith time-delay matrix, see E.P. Wigner, Phys. Rev. 98, 145 (1955); and
-
(1955)
Phys. Rev.
, vol.98
, pp. 145
-
-
Wigner, E.P.1
-
26
-
-
85038929794
-
-
The numerical method to generate random matrices according to the distribution (18) is outlined in J.N.H.J. Cremers and P.W. Brouwer (unpublished)
-
The numerical method to generate random matrices according to the distribution (18) is outlined in J.N.H.J. Cremers and P.W. Brouwer (unpublished).
-
-
-
-
28
-
-
85038917034
-
-
The tails of the distribution depend on the value of the capacitance C. In the non-interacting limit (Formula presented) and (Formula presented), they read (Formula presented) for (Formula presented) and (Formula presented) for (Formula presented)
-
The tails of the distribution depend on the value of the capacitance C. In the non-interacting limit (Formula presented) and (Formula presented), they read (Formula presented) for (Formula presented) and (Formula presented) for (Formula presented).
-
-
-
-
30
-
-
85038896666
-
-
For single-channel contacts (Formula presented) (Formula presented) is expressed in terms of the scattering matrix S as (Formula presented). Since (Formula presented) under reversal of a magnetic field B, this equation results in (Formula presented). There is no such magnetic field symmetry of the pumped voltage for (Formula presented)
-
For single-channel contacts (Formula presented) (Formula presented) is expressed in terms of the scattering matrix S as (Formula presented). Since (Formula presented) under reversal of a magnetic field B, this equation results in (Formula presented). There is no such magnetic field symmetry of the pumped voltage for (Formula presented).
-
-
-
|