메뉴 건너뛰기




Volumn 3, Issue , 2002, Pages 2011-2015

A new regularization learning method for improving generalization capability of neural network

Author keywords

Fuzzy rule inference; Generalization ability; Neural network; Regularization method

Indexed keywords

APPROXIMATION THEORY; BACKPROPAGATION; COMPUTATIONAL COMPLEXITY; COMPUTER SIMULATION; CONVERGENCE OF NUMERICAL METHODS; FUZZY SETS; INFERENCE ENGINES; LEARNING ALGORITHMS; LEARNING SYSTEMS; MEMBERSHIP FUNCTIONS; PARAMETER ESTIMATION; PATTERN RECOGNITION;

EID: 0036952083     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (10)

References (12)
  • 1
    • 0000902690 scopus 로고
    • The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
    • San Mateo, CA: Morgan Kaufmann
    • Moody J E, The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems, in Advances in Neural Information Processing Systems 4, San Mateo, CA: Morgan Kaufmann, 1992:847-854
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 847-854
    • Moody, J.E.1
  • 3
    • 0034151613 scopus 로고    scopus 로고
    • Second-order learning algorithm with squared penalty term
    • Saito, K, Nakano, R, Second-order learning algorithm with squared penalty term, Neural Computation, 2000, 12: 709-729
    • (2000) Neural Computation , vol.12 , pp. 709-729
    • Saito, K.1    Nakano, R.2
  • 4
    • 0033355287 scopus 로고    scopus 로고
    • The "weight smoothing' regulation of MLP for jacobian stabilization
    • Aires F, Schimitt, M, Chedin, A, and Scott N, The "weight smoothing' regulation of MLP for Jacobian stabilization, IEEE Trans. on Neural Networks, 1999, 10(6): 1502-1510
    • (1999) IEEE Trans. on Neural Networks , vol.10 , Issue.6 , pp. 1502-1510
    • Aires, F.1    Schimitt, M.2    Chedin, A.3    Scott, N.4
  • 5
    • 0030130724 scopus 로고    scopus 로고
    • Structural learning with forgetting
    • Ishikawa M, Structural learning with forgetting, Neural Networks, 1996, 9(3): 509-521
    • (1996) Neural Networks , vol.9 , Issue.3 , pp. 509-521
    • Ishikawa, M.1
  • 7
    • 0012506608 scopus 로고    scopus 로고
    • Chinese source
    • Chinese source 1998, 35(8): 689-693
    • (1998) , vol.35 , Issue.8 , pp. 689-693
  • 9
    • 0012506609 scopus 로고    scopus 로고
    • Chinese source
    • Chinese source 1998
    • (1998)
  • 12
    • 0029185114 scopus 로고
    • Use of quasi-newton method in a feedforward neural network construction algorithm
    • Rudy Setiono, Lucas Chi Kwong Hui, Use of quasi-Newton method in a feedforward neural network construction algorithm, IEEE Trans. on Neural Networks, 1995, 6(1):273-277
    • (1995) IEEE Trans. on Neural Networks , vol.6 , Issue.1 , pp. 273-277
    • Setiono, R.1    Chi, L.2    Hui, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.