메뉴 건너뛰기




Volumn 13, Issue 6, 2002, Pages 1432-1449

Predictive modular neural networks for unsupervised segmentation of switching time series: The data allocation problem

Author keywords

Adaptive systems; Competitive learning; Data allocation (DA); Modularity; Switching; Time series; Unsupervised learning

Indexed keywords

ADAPTIVE CONTROL SYSTEMS; DATA ACQUISITION; ERRORS; ITERATED SWITCHING NETWORKS; TIME SERIES ANALYSIS;

EID: 0036857915     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2002.804288     Document Type: Article
Times cited : (5)

References (60)
  • 1
    • 0014738902 scopus 로고
    • On state estimation in switching environments
    • Jan.
    • G.A. Ackerson and K.S. Fu, "On state estimation in switching environments," IEEE Trans. Automat. Contr., vol. AC-15, pp. 10-17, Jan. 1970.
    • (1970) IEEE Trans. Automat. Contr. , vol.AC-15 , pp. 10-17
    • Ackerson, G.A.1    Fu, K.S.2
  • 2
    • 0001588636 scopus 로고
    • Smooth on-line learning algorithms for hidden Markov models
    • P. Baldi and Y. Chauvin, "Smooth on-line learning algorithms for hidden Markov models," Neural Comput., vol. 6, pp. 305-316, 1994.
    • (1994) Neural Comput. , vol.6 , pp. 305-316
    • Baldi, P.1    Chauvin, Y.2
  • 5
    • 0030242097 scopus 로고    scopus 로고
    • Input/output HMMs for sequence processing
    • Sept.
    • Y. Bengio and P. Frasconi, "Input/output HMMs for sequence processing," IEEE Trans. Neural Networks, vol. 7, pp. 1231-1249, Sept. 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 1231-1249
    • Bengio, Y.1    Frasconi, P.2
  • 6
    • 0000802938 scopus 로고    scopus 로고
    • Markovian models for sequential data
    • Y. Bengio, "Markovian models for sequential data," Neural Comp. Surveys, vol. 2, pp. 129-162, 1998.
    • (1998) Neural Comp. Surveys , vol.2 , pp. 129-162
    • Bengio, Y.1
  • 8
    • 85153959666 scopus 로고
    • Convergence properties of the k-means algorithms
    • G. Tesauro et al., Eds. Cambridge, MA: MIT Press
    • L. Bottou and Y. Bengio et al., "Convergence properties of the k-means algorithms," in Advantages in Neural Information Processing Systems 7, G. Tesauro et al., Eds. Cambridge, MA: MIT Press, 1995, pp. 585-592.
    • (1995) Advantages in Neural Information Processing Systems , vol.7 , pp. 585-592
    • Bottou, L.1    Bengio, Y.2
  • 10
    • 0001119510 scopus 로고
    • Mixtures of controllers for jump linear and nonlinear plants
    • J.D. Cowen, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann
    • T.W. Cacciatore and S.J. Nowlan, "Mixtures of controllers for jump linear and nonlinear plants," in Advances in Neural Information Processing Systems 6, J.D. Cowen, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann, 1994, pp. 719-726.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 719-726
    • Cacciatore, T.W.1    Nowlan, S.J.2
  • 11
    • 0029342027 scopus 로고
    • A necessary condition for effective performance of the multiple model adaptive estimator
    • Sept.
    • M.J. Caputi, "A necessary condition for effective performance of the multiple model adaptive estimator," IEEE Trans. Aerosp. Electron. Syst., vol. 31, pp. 1132-1138, Sept. 1995.
    • (1995) IEEE Trans. Aerosp. Electron. Syst. , vol.31 , pp. 1132-1138
    • Caputi, M.J.1
  • 12
    • 0000193853 scopus 로고
    • On Gibbs sampling for state space models
    • C.K. Carter and R. Kohn, "On Gibbs sampling for state space models," Biometrika, vol. 81, pp. 541-553, 1994.
    • (1994) Biometrika , vol.81 , pp. 541-553
    • Carter, C.K.1    Kohn, R.2
  • 13
    • 0002596525 scopus 로고    scopus 로고
    • A comparison of the forecast performance of Markov-switching and threshold autoregressive models of U.S. GNP
    • M.P. Clements and H.M. Krolzig, "A comparison of the forecast performance of Markov-switching and threshold autoregressive models of U.S. GNP," Econom. J., vol. 1, pp. 47-75, 1998.
    • (1998) Econom. J. , vol.1 , pp. 47-75
    • Clements, M.P.1    Krolzig, H.M.2
  • 14
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A.P. Dempster, N.M. Laird, and D.B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. Royal Statist. Soc. B., vol. 39, pp. 1-38, 1977.
    • (1977) J. Royal Statist. Soc. B. , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 15
    • 0026854213 scopus 로고
    • A generalized hidden Markov model with state-conditioned trend functions of time for the speech signal
    • L. Deng, "A generalized hidden Markov model with state-conditioned trend functions of time for the speech signal," Signal Processing, vol. 27, pp. 65-78, 1992.
    • (1992) Signal Processing , vol.27 , pp. 65-78
    • Deng, L.1
  • 16
    • 0026821564 scopus 로고
    • Modeling acoustic transitions in speech by state interpolation HMM
    • Feb.
    • L. Deng, P. Kenny, M. Lennig, and P. Mermelstein, "Modeling acoustic transitions in speech by state interpolation HMM," IEEE Trans. Signal Processing, vol. 40, pp. 265-271, Feb. 1992.
    • (1992) IEEE Trans. Signal Processing , vol.40 , pp. 265-271
    • Deng, L.1    Kenny, P.2    Lennig, M.3    Mermelstein, P.4
  • 18
    • 0028721469 scopus 로고
    • The filtering problem for continuous-time linear systems with Markovian switching coefficients
    • F. Dufour and P. Bertrand, "The filtering problem for continuous-time linear systems with Markovian switching coefficients," Syst. Contr. Lett., vol. 23, pp. 453-461, 1994.
    • (1994) Syst. Contr. Lett. , vol.23 , pp. 453-461
    • Dufour, F.1    Bertrand, P.2
  • 19
    • 0011849609 scopus 로고
    • Stabilizing control for hybrid models
    • Dec.
    • _, "Stabilizing control for hybrid models," IEEE Trans. Automat. Contr., vol. 39, pp. 2354-2357, Dec. 1993.
    • (1993) IEEE Trans. Automat. Contr. , vol.39 , pp. 2354-2357
  • 22
    • 0001646121 scopus 로고    scopus 로고
    • Variational learning for switching state-space models
    • Z. Ghahramani and G.E. Hinton, "Variational learning for switching state-space models," Neural Comput., vol. 12, pp. 963-996, 1998.
    • (1998) Neural Comput. , vol.12 , pp. 963-996
    • Ghahramani, Z.1    Hinton, G.E.2
  • 23
    • 0002049440 scopus 로고    scopus 로고
    • Learning dynamic Bayesian networks
    • Adaptive Processing of Sequences and Data Structures, C.L. Giles and M. Gori, Eds. New York: Springer-Verlag
    • Z. Ghahramani, "Learning dynamic Bayesian networks," in Adaptive Processing of Sequences and Data Structures, C.L. Giles and M. Gori, Eds. New York: Springer-Verlag, 1998, Lecture Notes in Artificial Intelligence, pp. 168-197.
    • (1998) Lecture Notes in Artificial Intelligence , pp. 168-197
    • Ghahramani, Z.1
  • 24
    • 84899008192 scopus 로고    scopus 로고
    • Learning nonlinear dynamical systems using an EM algorithm
    • M.S. Kearns, S.A. Solla, and D.A. Cohn, Eds. Cambridge, MA: MIT Press
    • Z. Ghahramani and S. Roweis, "Learning nonlinear dynamical systems using an EM algorithm," in Advances in Neural Information Processing Systems 11, M.S. Kearns, S.A. Solla, and D.A. Cohn, Eds. Cambridge, MA: MIT Press, 1999, pp. 599-605.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 599-605
    • Ghahramani, Z.1    Roweis, S.2
  • 25
    • 45149138487 scopus 로고
    • Analysis of times series subject to changes in regime
    • J.D. Hamilton, "Analysis of times series subject to changes in regime," J. Econom., vol. 45, pp. 39-70, 1990.
    • (1990) J. Econom. , vol.45 , pp. 39-70
    • Hamilton, J.D.1
  • 26
    • 0003410290 scopus 로고
    • Princeton, NJ: Princeton Univ. Press
    • _, Time Series Analysis. Princeton, NJ: Princeton Univ. Press, 1994.
    • (1994) Time Series Analysis
  • 28
    • 0029247140 scopus 로고
    • Identification of nonlinear system structure and parameters using regime decomposition
    • T.A. Johansen and B.A. Foss, "Identification of nonlinear system structure and parameters using regime decomposition," Automatica, vol. 31, pp. 321-326, 1995.
    • (1995) Automatica , vol.31 , pp. 321-326
    • Johansen, T.A.1    Foss, B.A.2
  • 29
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • M.I. Jordan and R.A. Jacobs, "Hierarchical mixtures of experts and the EM algorithm," Neural Comput., vol. 6, pp. 181-214, 1994.
    • (1994) Neural Comput. , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 30
    • 0022097649 scopus 로고
    • Maximum-likelihood estimation for mixture multivariate stochastic observations of Markov chains
    • B.H. Juang, "Maximum-likelihood estimation for mixture multivariate stochastic observations of Markov chains," AT & T Tech. J., vol. 64, 1985.
    • (1985) AT & T Tech. J. , vol.64
    • Juang, B.H.1
  • 31
    • 0031034197 scopus 로고    scopus 로고
    • Predictive modular neural networks for time series classification
    • A. Kehagias and V. Petridis, "Predictive modular neural networks for time series classification," Neural Networks, vol. 10, pp. 31-49, 1996.
    • (1996) Neural Networks , vol.10 , pp. 31-49
    • Kehagias, A.1    Petridis, V.2
  • 32
    • 0001481001 scopus 로고    scopus 로고
    • Time series segmentation using predictive modular neural networks
    • _, "Time series segmentation using predictive modular neural networks," Neural Comput., vol. 9, pp. 1691-1710, 1997.
    • (1997) Neural Comput. , vol.9 , pp. 1691-1710
  • 33
    • 0025388113 scopus 로고
    • A linear predictive HMM for vector-valued observations with applications to speech recognition
    • Mar.
    • P. Kenny, M. Lennig, and P. Mermelstein, "A linear predictive HMM for vector-valued observations with applications to speech recognition," IEEE Trans. Acoust., Speech, Signal Processing, vol. 8, pp. 220-225, Mar. 1990.
    • (1990) IEEE Trans. Acoust., Speech, Signal Processing , vol.8 , pp. 220-225
    • Kenny, P.1    Lennig, M.2    Mermelstein, P.3
  • 34
    • 0034220601 scopus 로고    scopus 로고
    • Identification of nonstationary dynamics in physiological recordings
    • J. Kohlmorgen, K.R. Mueller, J. Rittweger, and K. Pawelzik, "Identification of nonstationary dynamics in physiological recordings," Biol. Cybern., vol. 83, pp. 73-84, 2000.
    • (2000) Biol. Cybern. , vol.83 , pp. 73-84
    • Kohlmorgen, J.1    Mueller, K.R.2    Rittweger, J.3    Pawelzik, K.4
  • 35
    • 0028181441 scopus 로고
    • Hidden Markov models in computational biology: Applications to protein modeling
    • A. Krogh et al., "Hidden Markov models in computational biology: Applications to protein modeling," J. Mol. Biol., vol. 235, pp. 1501-1531, 1994.
    • (1994) J. Mol. Biol. , vol.235 , pp. 1501-1531
    • Krogh, A.1
  • 38
    • 0002861635 scopus 로고
    • Optimal estimation in the presence of unknown parameters
    • Feb.
    • C.G. Hilborn and D.G. Lainiotis, "Optimal estimation in the presence of unknown parameters," IEEE Trans. Syst. Sci. Cybern., vol. SMC-5, pp. 38-43, Feb. 1969.
    • (1969) IEEE Trans. Syst. Sci. Cybern. , vol.SMC-5 , pp. 38-43
    • Hilborn, C.G.1    Lainiotis, D.G.2
  • 39
    • 0015039116 scopus 로고
    • Optimal adaptive estimation: Structure and parameter adaptation
    • Jan.
    • D.G. Lainiotis, "Optimal adaptive estimation: Structure and parameter adaptation," IEEE Trans. Automat Contr., vol. AC-16, pp. 160-170, Jan. 1971.
    • (1971) IEEE Trans. Automat Contr. , vol.AC-16 , pp. 160-170
    • Lainiotis, D.G.1
  • 41
    • 0029325388 scopus 로고
    • Adaptation and learning using multiple models, switching and tuning
    • Jan.
    • K. Narendra, "Adaptation and learning using multiple models, switching and tuning," IEEE Contr. Syst. Mag., pp. 37-51, Jan. 1995.
    • (1995) IEEE Contr. Syst. Mag. , pp. 37-51
    • Narendra, K.1
  • 43
    • 0002788893 scopus 로고    scopus 로고
    • A new view of the EM algorithm that justifies incremental, sparse and other variants
    • M.I. Jordan, Ed. Boston, MA: Kluwer
    • R.M. Neal and G. Hinton, "A new view of the EM algorithm that justifies incremental, sparse and other variants," in Learning in Graphical Models, M.I. Jordan, Ed. Boston, MA: Kluwer, 1998, pp. 355-368.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.2
  • 44
    • 0030245363 scopus 로고    scopus 로고
    • From HMMs to segment models: A unified view of stochastic modeling for speech recognition
    • Mar.
    • M. Ostendorf, V. Digalakis, and O. Kimball, "From HMMs to segment models: A unified view of stochastic modeling for speech recognition," IEEE Trans. Speech Audio Processing, pp. 360-378, Mar. 1996.
    • (1996) IEEE Trans. Speech Audio Processing , pp. 360-378
    • Ostendorf, M.1    Digalakis, V.2    Kimball, O.3
  • 45
    • 0001558731 scopus 로고    scopus 로고
    • Annealed competition of experts for a segmentation and classification of switching dynamics
    • K. Pawelzik, J. Kohlmorgen, and K.R. Muller, "Annealed competition of experts for a segmentation and classification of switching dynamics," Neural Comput., vol. 8, pp. 357-372, 1996.
    • (1996) Neural Comput. , vol.8 , pp. 357-372
    • Pawelzik, K.1    Kohlmorgen, J.2    Muller, K.R.3
  • 46
    • 0000458484 scopus 로고    scopus 로고
    • A recurrent network implementation of time series classification
    • V. Petridis and A. Kehagias, "A recurrent network implementation of time series classification," Neural Comput., vol. 8, pp. 357-372, 1996.
    • (1996) Neural Comput. , vol.8 , pp. 357-372
    • Petridis, V.1    Kehagias, A.2
  • 47
    • 0029771135 scopus 로고    scopus 로고
    • Modular neural networks for MAP classification of time series and the partition algorithm
    • Jan.
    • _, "Modular neural networks for MAP classification of time series and the partition algorithm," IEEE Trans. Neural Networks, vol. 7, pp. 73-86, Jan. 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 73-86
  • 49
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Feb.
    • L.R. Rabiner, "A tutorial on hidden Markov models and selected applications in speech recognition," Proc. IEEE, vol. 77, pp. 257-285, Feb. 1989.
    • (1989) Proc. IEEE , vol.77 , pp. 257-285
    • Rabiner, L.R.1
  • 50
    • 0000147488 scopus 로고    scopus 로고
    • OnLine model selection based on the variational Bayes
    • M. Sato, "OnLine model selection based on the variational Bayes," Neural Comput., vol. 13, pp. 1649-1681, 2001.
    • (2001) Neural Comput. , vol.13 , pp. 1649-1681
    • Sato, M.1
  • 51
    • 0034850596 scopus 로고    scopus 로고
    • Topology free hidden Markov models: Application to background modeling
    • B. Stenger et al., "Topology free hidden Markov models: Application to background modeling," in Proc. 8th IEEE Int. Conf. Comput. Vision, vol. I, 2001, pp. 294-301.
    • (2001) Proc. 8th IEEE Int. Conf. Comput. Vision , vol.1 , pp. 294-301
    • Stenger, B.1
  • 53
    • 0032354661 scopus 로고    scopus 로고
    • Testing and modeling multivariate threshold models
    • R.S. Tsay, "Testing and modeling multivariate threshold models," J. Amer. Statist. Assoc., vol. 93, pp. 1188-1202, 1998.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 1188-1202
    • Tsay, R.S.1
  • 55
    • 85045980281 scopus 로고    scopus 로고
    • Smooth transition autoregressive models-A survey of recent developments
    • D. van Dijk, T. Terasvirta, and P.H. Franses, "Smooth transition autoregressive models-A survey of recent developments,", Econometric Rev., vol. 21, pp. 1-47, 2002.
    • (2002) Econometric Rev. , vol.21 , pp. 1-47
    • Van Dijk, D.1    Terasvirta, T.2    Franses, P.H.3
  • 57
    • 0003188086 scopus 로고    scopus 로고
    • Predicting daily probability distributions of S & P500 returns
    • A. Weigend and S. Shi, "Predicting daily probability distributions of S & P500 returns." J. Forecasting, vol. 19, pp. 375-392, 1998.
    • (1998) J. Forecasting , vol.19 , pp. 375-392
    • Weigend, A.1    Shi, S.2
  • 58
    • 0344073962 scopus 로고    scopus 로고
    • RBF nets, mixture experts, and Bayesian Ying-Yang learning
    • L. Xu, "RBF nets, mixture experts, and Bayesian Ying-Yang learning," Neurocomput., vol. 19, pp. 223-257, 1998.
    • (1998) Neurocomput. , vol.19 , pp. 223-257
    • Xu, L.1
  • 59
    • 0033716741 scopus 로고    scopus 로고
    • Temporal BYY learning for state space approach, hidden Markov model, and blind source separation
    • Nov.
    • _, "Temporal BYY learning for state space approach, hidden Markov model, and blind source separation," IEEE Trans. Signal Processing, vol. 48, pp. 2132-2144, Nov. 2000.
    • (2000) IEEE Trans. Signal Processing , vol.48 , pp. 2132-2144
  • 60
    • 0033308417 scopus 로고    scopus 로고
    • Reconstruction of chaotic dynamics and robustness to noise with on-line EM algorithm
    • W. Yoshida, S. Ishii, and M. Sato, "Reconstruction of chaotic dynamics and robustness to noise with on-line EM algorithm," presented at the IEEE SMC Conference, 1999.
    • (1999) IEEE SMC Conference
    • Yoshida, W.1    Ishii, S.2    Sato, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.