메뉴 건너뛰기




Volumn 8, Issue 3, 2002, Pages 323-340

Examples of integrable sub-Riemannian geodesic flows

Author keywords

Liouville integrability; Nonholonomic geodesic flow; Pseudonorm of n action; Sub Riemannian structure; Topological entropy

Indexed keywords

HAMILTONIANS; LAGRANGE MULTIPLIERS; METRIC SYSTEM; POISSON DISTRIBUTION; THEOREM PROVING; TOPOLOGY; VECTORS;

EID: 0036656721     PISSN: 10792724     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1016378304071     Document Type: Article
Times cited : (7)

References (20)
  • 1
    • 0003978095 scopus 로고
    • Nauka, Moscow; English translation: Graduale Texts in Mathematics, Springer
    • V.I. Arnold, Mathematical methods of classical mechanics. Nauka, Moscow, 1989; English translation: Graduale Texts in Mathematics, Springer.
    • (1989) Mathematical methods of classical mechanics
    • Arnold, V.I.1
  • 2
    • 0010520157 scopus 로고    scopus 로고
    • English translation, Springer
    • V.I. Arnold, Mathematical methods of classical mechanics. Nauka, Moscow, 1989; English translation: Graduale Texts in Mathematics, Springer.
    • Graduale Texts in Mathematics
  • 3
    • 0033276576 scopus 로고    scopus 로고
    • Sub-Riemannian metrics: Minimality of abnormal geodesics versus subanalyticity
    • A. A. Agrachev and A. V. Sarychev, Sub-Riemannian metrics: minimality of abnormal geodesics versus subanalyticity. ESAIM Control Optim. Calc. Var. 4 (1999), 377-403.
    • (1999) ESAIM Control Optim. Calc. Var. , vol.4 , pp. 377-403
    • Agrachev, A.A.1    Sarychev, A.V.2
  • 4
    • 0003192004 scopus 로고    scopus 로고
    • A new class of homogeneous manifolds with Liouville-integrable geodesic flows
    • L. Butler, A new class of homogeneous manifolds with Liouville-integrable geodesic flows. C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), No. 4, 127-131.
    • (1999) C. R. Math. Acad. Sci. Soc. R. Can. , vol.21 , Issue.4 , pp. 127-131
    • Butler, L.1
  • 7
    • 0034349072 scopus 로고    scopus 로고
    • Integrable geodesic flows with positive topological entropy
    • _, Integrable geodesic flows with positive topological entropy. Invent. Math. 140 (2000), No. 3, 639-650.
    • (2000) Invent. Math. , vol.140 , Issue.3 , pp. 639-650
  • 8
    • 0041043496 scopus 로고
    • Some problems in group theory that are connected with geometry
    • Algebra VII, Springer-Verlag, Berlin
    • R.I. Grigorchuk and P.F. Kurchanov, Some problems in group theory that are connected with geometry. In: Algebra VII, Encyclopaedia Math. Sci. 58, Springer-Verlag, Berlin (1993).
    • (1993) Encyclopaedia Math. Sci. , vol.58
    • Grigorchuk, R.I.1    Kurchanov, P.F.2
  • 9
    • 84972527025 scopus 로고
    • Calculus of variations via the Griffiths formalism
    • L. Hsu, Calculus of variations via the Griffiths formalism. J. Differential Geom. 36 (1992), No. 3, 551-589.
    • (1992) J. Differential Geom. , vol.36 , Issue.3 , pp. 551-589
    • Hsu, L.1
  • 10
    • 78149345672 scopus 로고
    • Some ergodic properties of commuting diffeomorphisms
    • Hu Yi Hu, Some ergodic properties of commuting diffeomorphisms. Ergodic Theory Dynam. Systems 13 (1993), No. 1, 73-100.
    • (1993) Ergodic Theory Dynam. Systems , vol.13 , Issue.1 , pp. 73-100
    • Hu, H.Y.1
  • 11
    • 0003195540 scopus 로고
    • Introduction to the modern theory of dynamical systems
    • Cambridge University Press, Cambridge
    • A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems. Encyclopedia Math. Appl. 54, Cambridge University Press, Cambridge, 1995.
    • (1995) Encyclopedia Math. Appl. , vol.54
    • Katok, A.1    Hasselblatt, B.2
  • 12
    • 0000955793 scopus 로고
    • Topological obstacles to the integrability of natural mechanical systems
    • V.V. Kozlov, Topological obstacles to the integrability of natural mechanical systems. Soviet Math. Dokl. 20 (1979), 1413-1415.
    • (1979) Soviet Math. Dokl. , vol.20 , pp. 1413-1415
    • Kozlov, V.V.1
  • 13
    • 0010481969 scopus 로고    scopus 로고
    • Symplectic and contact Lie algebras with an application to Monge-Ampère equations
    • B. S. Kruglikov, Symplectic and contact Lie algebras with an application to Monge-Ampère equations. Proc. Steklov Inst. Math. 221 (1998), 221-235.
    • (1998) Proc. Steklov Inst. Math. , vol.221 , pp. 221-235
    • Kruglikov, B.S.1
  • 14
    • 0031251458 scopus 로고    scopus 로고
    • A nonintegrable sub-Riemannian geodesic flow on a Carnot group
    • R. Montgomery, M. Shapiro, and A. A. Stolin, A nonintegrable sub-Riemannian geodesic flow on a Carnot group. J. Dynam. Control Systems 3 (1997), No. 4, 519-530.
    • (1997) J. Dynam. Control Systems , vol.3 , Issue.4 , pp. 519-530
    • Montgomery, R.1    Shapiro, M.2    Stolin, A.A.3
  • 15
    • 0033475429 scopus 로고    scopus 로고
    • On directional entropy functions
    • K. K. Park, On directional entropy functions. Israel J. Math. 113 (1999), 243-267.
    • (1999) Israel J. Math. , vol.113 , pp. 243-267
    • Park, K.K.1
  • 17
    • 0001962042 scopus 로고
    • Any two points of a totally nonholonomic space can be connected by an admissible line
    • Russian
    • P. K. Rashevsky, Any two points of a totally nonholonomic space can be connected by an admissible line. (Russian) Usp. Zap. Ped. Inst. im. Liebkncchta, Set. Phys. Math. 2 (1938), 83-94.
    • (1938) Usp. Zap. Ped. Inst. im. Liebkncchta, Set. Phys. Math. , vol.2 , pp. 83-94
    • Rashevsky, P.K.1
  • 19
    • 0000473750 scopus 로고
    • Topology of Riemannian manifolds with integrable geodesic flows
    • I. A. Taimanov, Topology of Riemannian manifolds with integrable geodesic flows. Proc. Steklov Inst. Math. 205 (1995), 139-150.
    • (1995) Proc. Steklov Inst. Math. , vol.205 , pp. 139-150
    • Taimanov, I.A.1
  • 20
    • 0003041322 scopus 로고
    • Nonholonomic dynamical systems. Geometry of distributions and variational problems
    • Dynamical Systems VII (V. I. Arnold and S. P. Novikov (Eds.)), Springer
    • A. M. Vershik and V. Ya. Gershkovich, Nonholonomic dynamical systems. Geometry of distributions and variational problems. In: Dynamical Systems VII (V. I. Arnold and S. P. Novikov (Eds.)), Encyclopaedia Math. Sci. 16, Springer, 1994.
    • (1994) Encyclopaedia Math. Sci. , vol.16
    • Vershik, A.M.1    Gershkovich, V.Ya.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.