-
1
-
-
85069112716
-
A new class of homogeneous manifolds with Liouville-integrable geodesic flows
-
Preprint # 1998-8, Queen's University at Kingston, Canada, November, submitted to J. Differential Geom.
-
1. Butler, L.: A new class of homogeneous manifolds with Liouville-Integrable geodesic flows. Math. Preprint # 1998-8, Queen's University at Kingston, Canada, November, 1998; submitted to J. Differential Geom.
-
(1998)
Math.
-
-
Butler, L.1
-
2
-
-
0001485296
-
On the relations among various entropy characteristics of dynamical systems
-
2. Dinaburg, E. I.: On the relations among various entropy characteristics of dynamical systems. Math. USSR Izv. 5 (1971), 337-378
-
(1971)
Math. USSR Izv.
, vol.5
, pp. 337-378
-
-
Dinaburg, E.I.1
-
3
-
-
0041043496
-
Some problems in group theory that are connected with geometry
-
Berlin, Springer
-
3. Grigorchuk, R. I., Kurchanov, P. F.: Some problems in group theory that are connected with geometry. In: Algebra VII, Encyclopaedia Math. Sci. 58, Berlin, Springer, 1993
-
(1993)
Algebra VII, Encyclopaedia Math. Sci.
, vol.58
-
-
Grigorchuk, R.I.1
Kurchanov, P.F.2
-
4
-
-
0000955793
-
Topological obstructions to the integrability of natural mechanical systems
-
4. Kozlov, V. V.: Topological obstructions to the integrability of natural mechanical systems. Soviet Math. Dokl. 20 (1979), 1413-1415
-
(1979)
Soviet Math. Dokl.
, vol.20
, pp. 1413-1415
-
-
Kozlov, V.V.1
-
5
-
-
84957162365
-
Integrability and non-integrability in Hamiltonian mechanics
-
5. Kozlov, V. V.: Integrability and non-integrability in Hamiltonian mechanics. Russian Math. Surveys 38 (1983), 1-76
-
(1983)
Russian Math. Surveys
, vol.38
, pp. 1-76
-
-
Kozlov, V.V.1
-
6
-
-
84971947070
-
On the topology of manifolds with completely integrable geodesic flows
-
6. Paternain, G. P.: On the topology of manifolds with completely integrable geodesic flows. Ergod. Theory Dynam. Syst. 12 (1992), 109-121
-
(1992)
Ergod. Theory Dynam. Syst.
, vol.12
, pp. 109-121
-
-
Paternain, G.P.1
-
7
-
-
0002389731
-
On the topology of manifolds with completely integrable geodesic flows. II
-
7. Paternain, G. P.: On the topology of manifolds with completely integrable geodesic flows. II. J. Geom. Phys. 13 (1994), 289-298
-
(1994)
J. Geom. Phys.
, vol.13
, pp. 289-298
-
-
Paternain, G.P.1
-
8
-
-
0001291025
-
Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds
-
8. Taimanov, I. A.: Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds. Math. USSR Izv. 30 (1988), 403-409
-
(1988)
Math. USSR Izv.
, vol.30
, pp. 403-409
-
-
Taimanov, I.A.1
-
9
-
-
0000201858
-
On the topological properties of integrable geodesic flows
-
Russian
-
9. Taimanov, I. A.: On the topological properties of integrable geodesic flows. Mat. Zametki 44:3 (1988), 283-284 (Russian)
-
(1988)
Mat. Zametki
, vol.44
, Issue.3
, pp. 283-284
-
-
Taimanov, I.A.1
-
10
-
-
0000473750
-
The topology of Riemannian manifolds with integrable geodesic flows
-
10. Taimanov, I. A.: The topology of Riemannian manifolds with integrable geodesic flows. Proc. Steklov Inst. Math. 205 (1995), 139-150
-
(1995)
Proc. Steklov Inst. Math.
, vol.205
, pp. 139-150
-
-
Taimanov, I.A.1
|