|
Volumn 48, Issue 1-3, 2002, Pages 25-50
|
Theoretical and experimental evaluation of the subspace information criterion
a a |
Author keywords
Generalization capability; Model selection; Small samples; Subspace information criterion; Supervised learning
|
Indexed keywords
APPROXIMATION THEORY;
COMPUTER SIMULATION;
ERROR ANALYSIS;
MATHEMATICAL MODELS;
MATRIX ALGEBRA;
MAXIMUM LIKELIHOOD ESTIMATION;
NORMAL DISTRIBUTION;
PROBABILITY DENSITY FUNCTION;
REGRESSION ANALYSIS;
AKAIKE INFORMATION CRITERION;
BAYESIAN INFORMATION CRITERION;
ERROR ESTIMATION;
GENERALIZATION MEASURE;
MINIMUM DESCRIPTION LENGTH CRITERION;
MODEL SELECTION;
SMALL SAMPLES;
SUBSPACE INFORMATION CRITERION;
SUPERVISED LEARNING;
LEARNING SYSTEMS;
|
EID: 0036643042
PISSN: 08856125
EISSN: None
Source Type: Journal
DOI: 10.1023/A:1013995402903 Document Type: Article |
Times cited : (12)
|
References (41)
|