메뉴 건너뛰기




Volumn 30, Issue 6, 2002, Pages 331-378

Geometrical theory of fluid flows and dynamical systems

Author keywords

Dynamical systems; Fluid flows; Geodesic equation; Geometrical theory; Jacobi equation; Lie algebra; Lie group; Riemannian curvatures

Indexed keywords

AXIAL FLOW; INCOMPRESSIBLE FLOW; VORTEX FLOW;

EID: 0036602002     PISSN: 01695983     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0169-5983(02)00063-1     Document Type: Article
Times cited : (13)

References (33)
  • 2
    • 0001356905 scopus 로고
    • Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits
    • (1966) Ann. Inst. Fourier (Grenoble) , vol.16 , pp. 319-361
    • Arnold, V.I.1
  • 6
    • 0001079851 scopus 로고
    • On the characteristic classes of groups of diffeomorphisms
    • (1977) Enseign. Math , vol.23 , pp. 209-220
    • Bott, R.1
  • 9
  • 28
    • 5544287621 scopus 로고
    • Geometrical hints for a nonperturbative approach to Hamiltonian dynamics
    • (1993) Phys. Rev. E , vol.47 , pp. 828-850
    • Pettini, M.1
  • 32
    • 0035962581 scopus 로고    scopus 로고
    • Geodesics on extensions of Lie groups and stability: The superconductivity equation
    • (2001) Phys. Lett. A , vol.284 , pp. 23-30
    • Vizman, C.1
  • 33
    • 0005828337 scopus 로고
    • On the structure of phase-space, Hamiltonian variables and statistical approach to the description of two-dimensional hydrodynamics and magnetohydrodynamics
    • (1992) J. Phys. A , vol.25
    • Zeitlin, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.