메뉴 건너뛰기




Volumn 53, Issue 1, 1996, Pages 179-188

Geometric description of chaos in two-degrees-of-freedom Hamiltonian systems

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0000042390     PISSN: 1063651X     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevE.53.179     Document Type: Article
Times cited : (69)

References (15)
  • 5
    • 0004282301 scopus 로고
    • Foundations of Mechanics
    • Addison-Wesley, Redwood City, CA
    • R. Abraham and J. E. Marsden, Foundations of Mechanics (Addison-Wesley, Redwood City, CA, 1987).
    • (1987)
    • Abraham, R.1    Marsden, J.E.2
  • 7
    • 0003478288 scopus 로고
    • Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields
    • Springer-Verlag, Berlin
    • J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer-Verlag, Berlin, 1983).
    • (1983)
    • Guckenheimer, J.1    Holmes, P.2
  • 8
    • 0003442133 scopus 로고
    • Regular and Chaotic Dynamics
    • Springer-Verlag, Berlin
    • A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics (Springer-Verlag, Berlin, 1992).
    • (1992)
    • Lichtenberg, A.J.1    Lieberman, M.A.2
  • 9
    • 0003696581 scopus 로고
    • Nonlinear Oscillations
    • Wiley, New York
    • A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (Wiley, New York, 1979).
    • (1979)
    • Nayfeh, A.H.1    Mook, D.T.2
  • 10
    • 0003562886 scopus 로고
    • Introduction to Nonlinear Differential and Integral Equations
    • Dover, New York
    • H. T. Davis, Introduction to Nonlinear Differential and Integral Equations (Dover, New York, 1962), p. 59.
    • (1962) , pp. 59
    • Davis, H.T.1
  • 13
    • 85035227512 scopus 로고    scopus 로고
    • Precisely, a positive measure of points where [Formula Presented]< 0 could be not sufficient to make unstable the solutions of Eq. (31). In fact it is well known that a reversed pendulum can be stabilized by a sufficiently rapidly varying force term. This is described by the equation x dotdot + ( [Formula Presented]+- [Formula Presented]) x =0, where [Formula Presented]+- [Formula Presented] is alternatively positive and negative [see V. I. Arnold, Les Méthodes Mathématiques de la Méchanique Classique (MIR, Moscow, 1976)]. In any case this is a very special exception.
    • Precisely, a positive measure of points where K(2)< 0 could be not sufficient to make unstable the solutions of Eq. (31). In fact it is well known that a reversed pendulum can be stabilized by a sufficiently rapidly varying force term. This is described by the equation x dotdot + ( ω2+- d2) x =0, where ω2+- d2 is alternatively positive and negative [see V. I. Arnold, Les Méthodes Mathématiques de la Méchanique Classique (MIR, Moscow, 1976)]. In any case this is a very special exception.
  • 15
    • 85035202456 scopus 로고    scopus 로고
    • W. Klingenberg, Riemannian Geometry (de Gruyter, Berlin, 1982).
    • Klingenberg, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.