-
5
-
-
0004282301
-
Foundations of Mechanics
-
Addison-Wesley, Redwood City, CA
-
R. Abraham and J. E. Marsden, Foundations of Mechanics (Addison-Wesley, Redwood City, CA, 1987).
-
(1987)
-
-
Abraham, R.1
Marsden, J.E.2
-
7
-
-
0003478288
-
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields
-
Springer-Verlag, Berlin
-
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer-Verlag, Berlin, 1983).
-
(1983)
-
-
Guckenheimer, J.1
Holmes, P.2
-
8
-
-
0003442133
-
Regular and Chaotic Dynamics
-
Springer-Verlag, Berlin
-
A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics (Springer-Verlag, Berlin, 1992).
-
(1992)
-
-
Lichtenberg, A.J.1
Lieberman, M.A.2
-
9
-
-
0003696581
-
Nonlinear Oscillations
-
Wiley, New York
-
A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (Wiley, New York, 1979).
-
(1979)
-
-
Nayfeh, A.H.1
Mook, D.T.2
-
10
-
-
0003562886
-
Introduction to Nonlinear Differential and Integral Equations
-
Dover, New York
-
H. T. Davis, Introduction to Nonlinear Differential and Integral Equations (Dover, New York, 1962), p. 59.
-
(1962)
, pp. 59
-
-
Davis, H.T.1
-
13
-
-
85035227512
-
-
Precisely, a positive measure of points where [Formula Presented]< 0 could be not sufficient to make unstable the solutions of Eq. (31). In fact it is well known that a reversed pendulum can be stabilized by a sufficiently rapidly varying force term. This is described by the equation x dotdot + ( [Formula Presented]+- [Formula Presented]) x =0, where [Formula Presented]+- [Formula Presented] is alternatively positive and negative [see V. I. Arnold, Les Méthodes Mathématiques de la Méchanique Classique (MIR, Moscow, 1976)]. In any case this is a very special exception.
-
Precisely, a positive measure of points where K(2)< 0 could be not sufficient to make unstable the solutions of Eq. (31). In fact it is well known that a reversed pendulum can be stabilized by a sufficiently rapidly varying force term. This is described by the equation x dotdot + ( ω2+- d2) x =0, where ω2+- d2 is alternatively positive and negative [see V. I. Arnold, Les Méthodes Mathématiques de la Méchanique Classique (MIR, Moscow, 1976)]. In any case this is a very special exception.
-
-
-
-
15
-
-
85035202456
-
-
W. Klingenberg, Riemannian Geometry (de Gruyter, Berlin, 1982).
-
-
-
Klingenberg, W.1
|